# Pinnacle at Liberty Bay

Preliminary Stormwater Site Plan Report

June 20, 2025

Revised: November 26, 2025

Prepared for

Montebanc Management, LLC 400 NW Gilman Blvd. #2781 Issaquah, WA 98027

Paul Devenzio (206) 391-8366



"I hereby state that this Stormwater Drainage Report has been prepared by me or under my supervision and meets the standard of care and expertise which is usual and customary in this community of professional engineers. The analysis has been prepared utilizing procedures and practices specified by the City of Poulsbo and within the standard accepted practices of the industry. I understand that the City of Poulsbo does not and will not assume liability for the sufficiency, suitability or performance of stormwater drainage facilities prepared by me."

Submitted by

ESM Consulting Engineers, LLC 33400 8th Avenue S, Suite 205 Federal Way, WA 98003

253.838.6113 tel 253.838.7104 fax



www.esmcivil.com

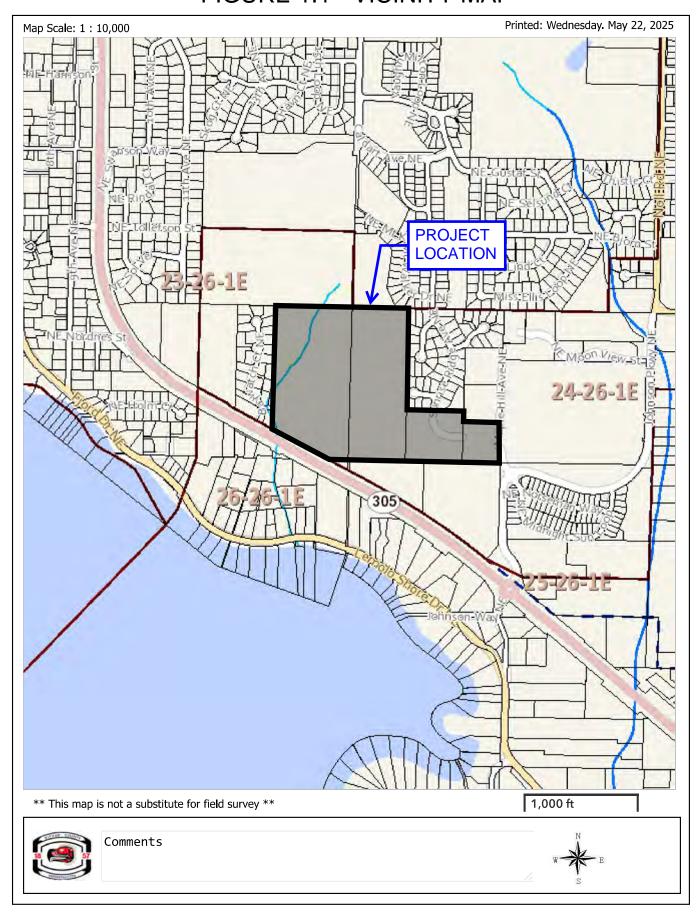
#### TABLE OF CONTENTS

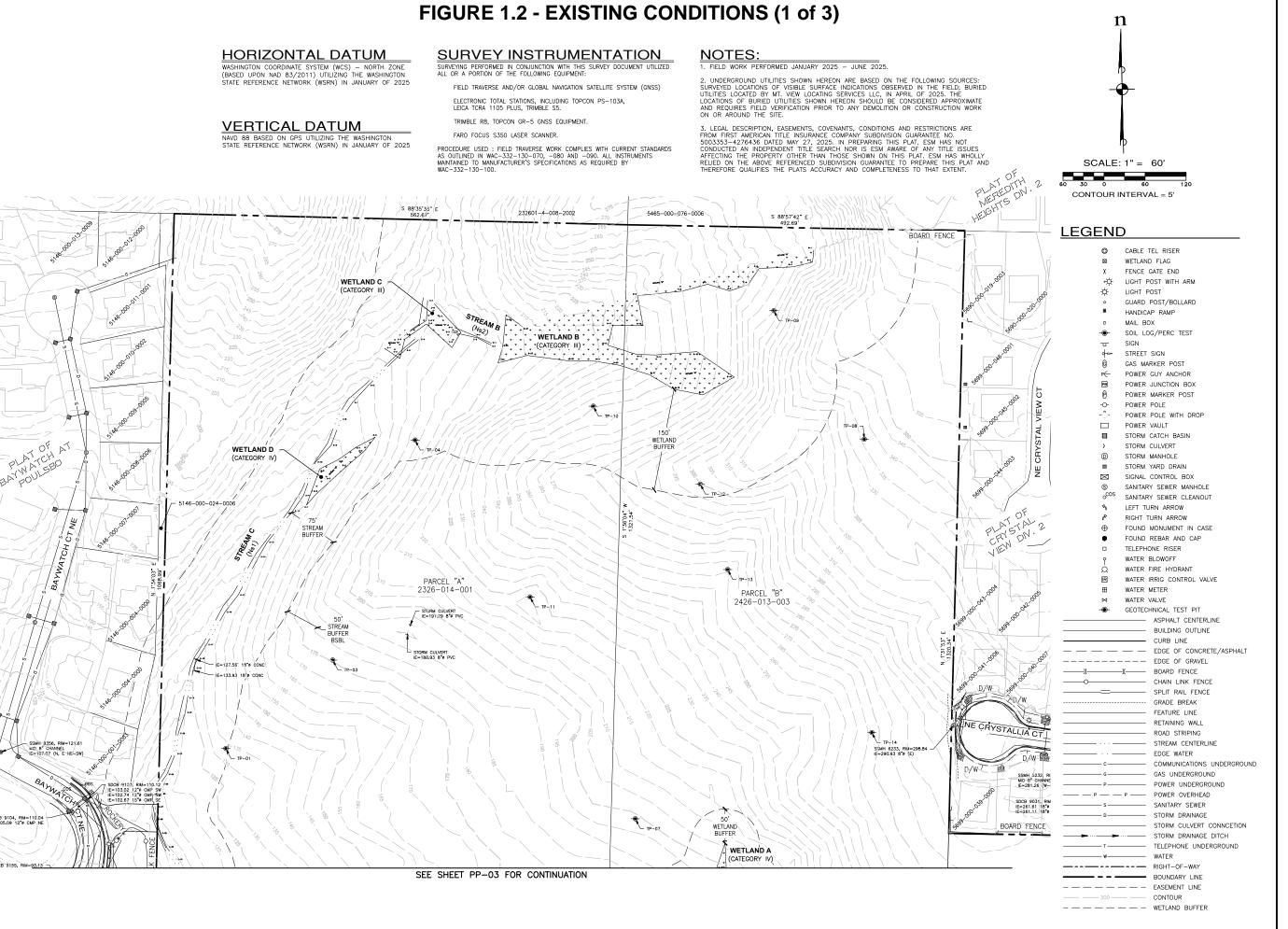
| 1.  | Project Overview                                          | 1  |  |
|-----|-----------------------------------------------------------|----|--|
| 2.  | Existing Condition Summary                                | 6  |  |
| 3.  | Off-Site Analysis Report                                  | 8  |  |
| 4.  | Permanent Stormwater Control Plan                         | 9  |  |
| 5.  | Discussion of Minimum Requirements                        | 18 |  |
| 6.  | Construction Stormwater Pollution Prevention Plan (SWPPP) | 22 |  |
| 7.  | Special Reports and Studies                               | 23 |  |
| 8.  | Other Permits                                             | 24 |  |
| 9.  | Operation and Maintenance Manual                          | 25 |  |
|     |                                                           |    |  |
|     | FIGURES                                                   |    |  |
| 1.1 | Vicinity Map                                              |    |  |
| 1.2 | Existing Conditions                                       |    |  |
| 1.3 | Proposed Conditions                                       |    |  |
| 1.4 | Web Soil Survey                                           |    |  |
| 4.1 | Pre-Developed Basin Map                                   |    |  |
| 4.2 | Developed Basin Map                                       |    |  |
|     |                                                           |    |  |
|     | APPENDICES                                                |    |  |
| A.  | Hydrology Model Output                                    |    |  |
| В.  | Geotechnical Engineering Study                            |    |  |
| C.  | Off-Site Analysis Report                                  |    |  |
| D.  | Wetland Hydroperiod Protection Analysis                   |    |  |
|     |                                                           |    |  |

#### 1. PROJECT OVERVIEW

The proposed **Pinnacle at Liberty Bay** project is a planned residential development located in the southwest quarter of Section 24, Township 26 North, Range 1 East, W.M., in the City of Poulsbo, WA. The site is situated on the north side of State Hwy 305, east of the Plat of Baywatch at Poulsbo, and west of the Plat of Crystal View. The subject property consists of four undeveloped parcels zoned RL (232601-4-001-2009, 242601-3-003-2008, 242601-3-018-2001, and 242601-3-005-2006) totaling approximately 41 acres.

The project is a phased residential subdivision comprising 148 detached single-family lots. Proposed improvements include domestic water, sanitary sewer, public roads, utility services, open space, pedestrian trails, and stormwater management facilities (one detention pond and one detention vault).


Primary access will be provided via Baywatch Ct NE within the Plat of Baywatch at Poulsbo. Additional access will be provided from NE Crystal Ct (Plat of Crystal View) and Johnson Parkway (Plat of Johnson Ridge). The project is requesting a Type III permit from the City of Poulsbo. Additional required permits include water and sewer extensions, a Construction Stormwater General Permit (CSWGP) from the State of Washington, Wetland Mitigation, Final Plat permits, and Building permits for retaining walls. Refer to Figure 1.1 for a vicinity map and Figure 1.3 for proposed conditions.


The development is designed to meet flow control and Enhanced stormwater treatment standards. Stormwater will be collected and conveyed by a series of pipes and catch basins. To meet flow control requirements, a stormwater detention pond is proposed on the southwest side of the property, and an underground detention vault is proposed on the southeast side. These facilities will mitigate runoff generated from the project's new and replaced surface areas.

Enhanced treatment will be provided using Oldcastle Infrastructure, Inc. BioPod Biofilter systems. One system will be located downstream of the detention vault, and two systems will be located upstream of the detention pond. Note that the location of the treatment units relative to the pond may be revised during the final design phase.

Discharge from the detention pond will be directed to Barrantes Creek (Stream C) along the west side of the site. The detention vault will discharge into an existing onsite stream (Stream D). Refer to Section 4 of this report for further discussion of existing and proposed hydrology and design details.

## FIGURE 1.1 - VICINITY MAP







CONSULTING ENGINEERS LLC 33400 8th Ave S, Sulle 205 | 🖷 | 🕸 | 💸

Σ U

MANAGEMENT,

MONTEBANC

SUBDIVISION

ВАУ

LIBERTY  $\forall$ 

**PINNACLE** 

DESIGNED BY: RAWN BY: HECKED BY:

PP-02

2 of 26 SHEETS

### FIGURE 1.2 - EXISTING CONDITIONS (2 of 3)

#### LEGAL DESCRIPTIONS

PARCEL A (TAX PARCEL NO. 232601-4-001):

THE EAST HALF OF THE SOUTHEAST QUARTER OF THE SOUTHEAST QUARTER IN SECTION 23, TOWNSHIP 26 NORTH, RANGE 1 EAST, W.M., KITSAP COUNTY, WASHINGTON;

EXCEPT 1.43 ACRES TO HIGHWAY 21A.

PARCEL B (TAX PARCEL 242601-3-003):

THE WEST 15 ACRES OF THE SOUTHWEST QUARTER OF THE SOUTHWEST QUARTER OF SECTION 24, TOWNSHIP 26 NORTH, RANGE 1 EAST, W.M., KITSAP COUNTY, WASHINGTON.

THE WEST 15 FEET OF GOVERNMENT LOT 7, SECTION 25, TOWNSHIP 26 NORTH, RANGE 1 EAST, W.M. LYING NORTHEASTERLY OF STATE HIGHWAY NO. 21A;

SITUATED IN KITSAP COUNTY, WASHINGTON.

PARCEL D (TAX PARCEL NO. 252601-2-048):

THE WEST 15 FEET OF GOVERNMENT LOT 7, SECTION 25, TOWNSHIP 26 NORTH, RANGE 1 EAST, W.M. LYING SOUTHEASTERLY OF STATE HIGHWAY NO. 21A;

SITUATED IN KITSAP COUNTY, WASHINGTON.

PARCEL E (PORTIOIN OF TAX PARCEL 242601-3-005 LYING NORTH OF SECTION LINE):

THAT PORTION OF THE SOUTHWEST QUARTER OF THE SOUTHWEST QUARTER OF SECTION 24, TOWNSHIP 26 NORTH, RANGE 1 EAST, W.M., IN KITSAP COUNTY, WASHINGTON, DESCRIBED AS FOLLOWS.

BEGINNING AT THE SOUTHEAST CORNER OF SAID QUARTER:

THENCE WEST ALONG THE SOUTH LINE OF SAID SECTION 24 A DISTANCE OF 330 FEET; THENCE NORTH PARALLEL WITH THE EAST LINE OF SAID QUARTER A DISTANCE OF 345.7 FOOT; THENCE EAST PARALLEL WITH THE SOUTH LINE OF SAID QUARTER A DISTANCE OF 330 FEET TO THE EAST LINE OF SAID QUARTER; THENCE SOUTH ALONG SAID EAST LINE A DISTANCE OF 345.7 FEET TO THE POINT OF BEGINNING:

EXCEPT THE EAST 15 FEET THEREOF

PARCEL E1 (PORTION OF TAX PARCEL 242601-3-005 LYING SOUTH OF SECTION LINE):

THAT PORTION OF GOVERNMENT LOT 7, SECTION 25, TOWNSHIP 26 NORTH, RANGE 1 EAST, W.M., IN KITSAP COUNTY, WASHINGTON, DESCRIBED AS FOLLOWS:

BEGINNING AT THE NORTHEAST COMER OF SAID GOVERNMENT LOT 7; THENCE SOUTH 15 FEET; THENCE NORTHWESTERLY IN A STRAIGHT LINE TO A POINT ON THE NORTH LINE OF SAID GOVERNMENT LOT 7, WHICH IS 200 FEET WEST OF THE NORTHEAST CORNER OF SAID GOVERNMENT LOT 7; THENCE EAST ALONG SAID NORTH LINE 200 FEET TO THE NORTHEAST CORNER THEREOF AND THE POINT OF BEGINNING, AS DISCLOSED IN DECREE FILED IN KITSAP COUNTY SUPERIOR COURT

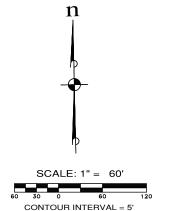
PARCEL F (TAX PARCEL NO. 242601-3-018):

THE SOUTH 1/3, EXCEPT COUNTY ROAD NO. 141, OF THE FOLLOWING DESCRIBED PROPERTY: THAT PORTION OF THE SOUTHWEST QUARTER OF THE SOUTHWEST QUARTER, SECTION 24, TOWNSHIP 26 NORTH, RANGE 1 EAST. W.M.. IN KITSAP COUNTY, WASHINGTON, DESCRIBED AS FOLLOWS:

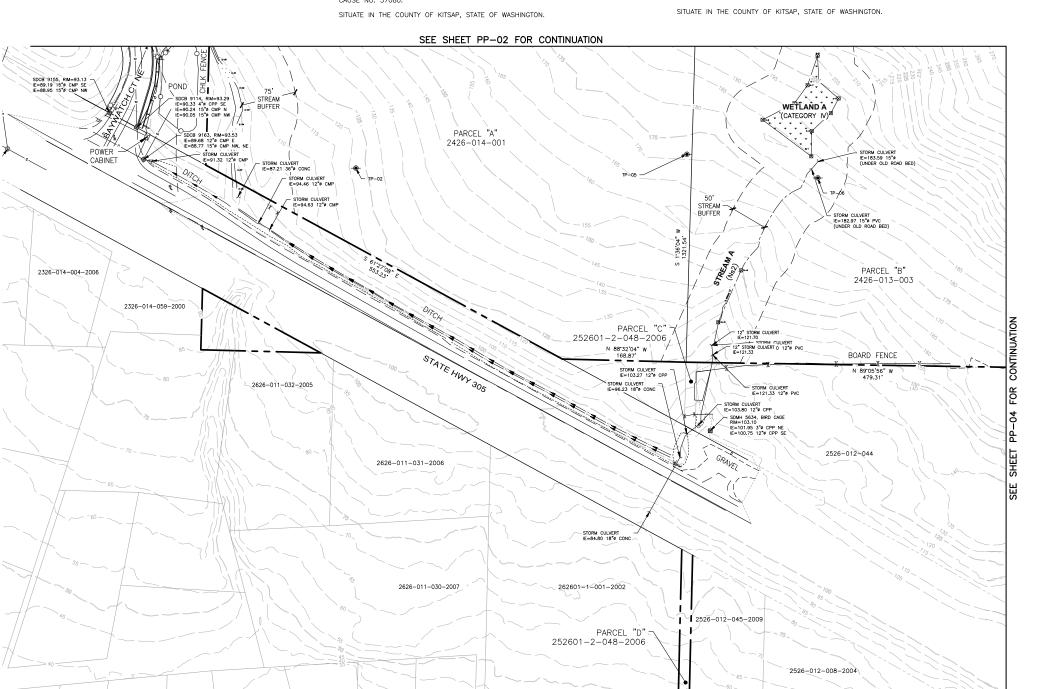
BEGINNING AT A POINT 330 FEET WEST OF THE NORTHEAST CORNER OF THE SOUTHWEST QUARTER OF THE SOUTHWEST QUARTER OF SAID SECTION 24; THENCE WEST 495 FEET; THENCE SOUTH 1320 FEET; THENCE EAST 495 FEET; THENCE NORTH 1320 FEET TO THE POINT OF BEGINNING.

SITUATE IN THE COUNTY OF KITSAP, STATE OF WASHINGTON.

PARCEL G (TAX PARCEL 242601-3-019):


THAT PORTION OF THE SOUTHWEST QUARTER OF THE SOUTHWEST QUARTER, SECTION 24, TOWNSHIP 26 NORTH, RANGE 1 EAST, W.M., IN KITSAP COUNTY, WASHINGTON, DESCRIBED AS FOLLOWS:

BEGINNING AT THE SOUTHEAST CORNER OF SAID SUBDIVISION:


THENCE NORTH 89'02'10" WEST ALONG SOUTH LINE. 15 FEET:

THENCE NORTH 01.30'56" EAST PARALLEL WITH THE EAST LINE OF SAID SUBDIVISION, 345.7 FEET:

THENCE SOUTH 29'02'10" EAST, 15 FEET TO THE EAST LINE OF SAID SUBDIVISION; THENCE SOUTH 01°30'56" WEST ALONG SAID EAST LINE, 345.7 FEET, MORE OR LESS, TO THE TRUE POINT OF BEGINNING.



SEE LEGEND ON SHEET PP-02



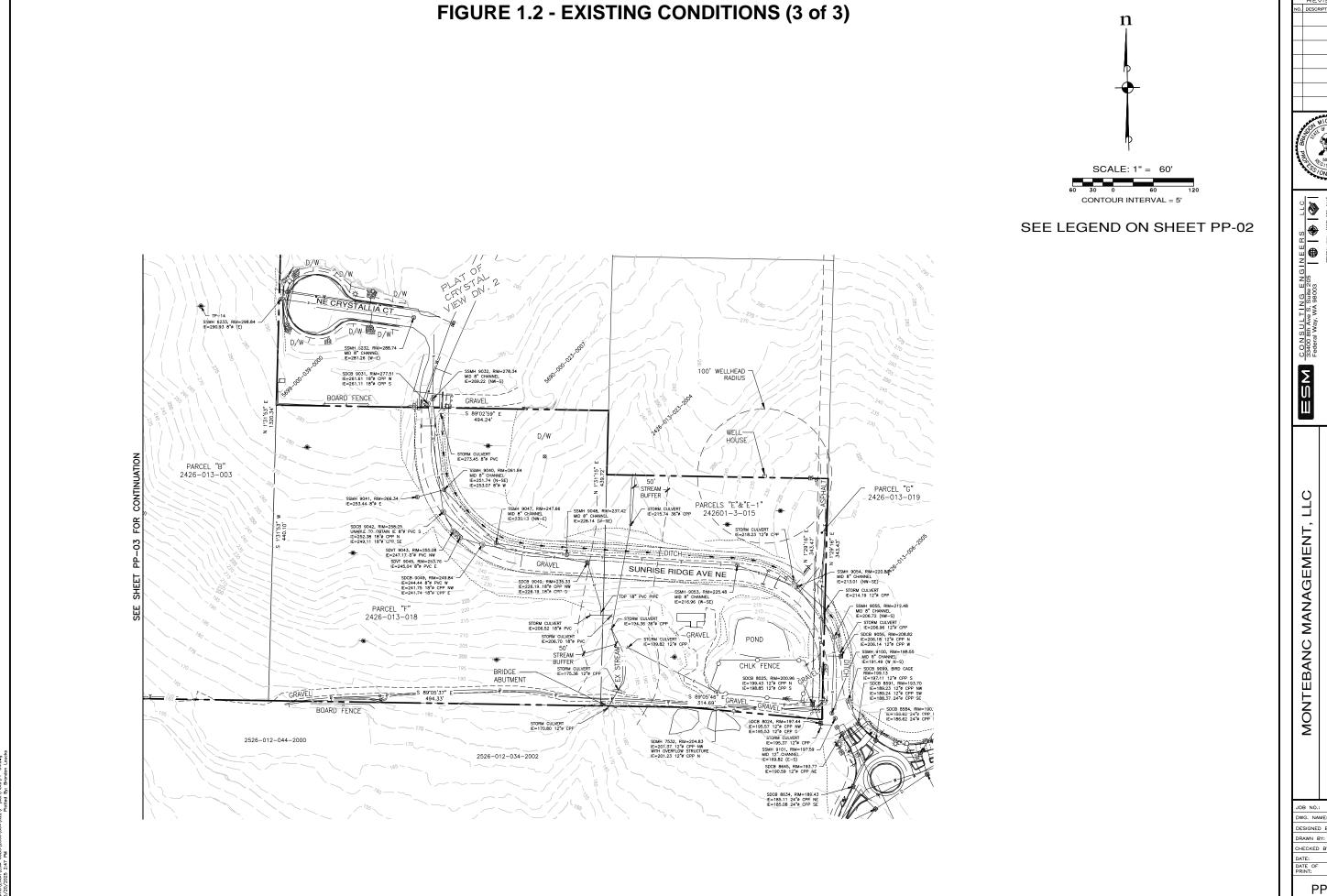
CONSULTING ENGINEERS LLC 33400 8th Ave S, Suite 205 | 🖶 | 🐠 | 🦑

∑ S U

MANAGEMENT,

MONTEBANC

ISION


SUBDIVI ВАУ

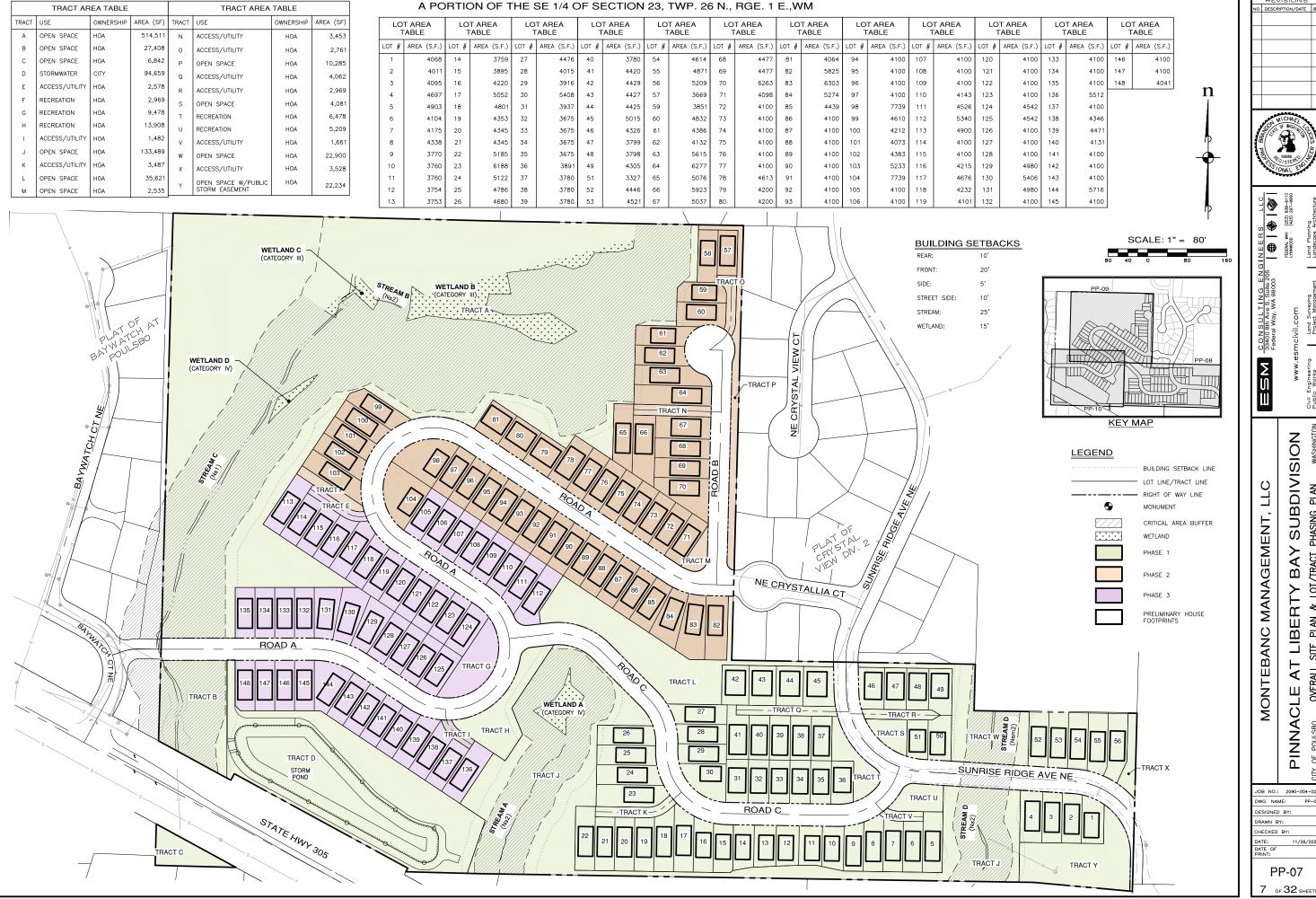
LIBERTY  $\mathsf{AT}$ Щ

**PINNACL** 

DESIGNED BY: DRAWN BY: HECKED BY:

PP-03 3 of 26 SHEETS






AT LIBERTY BAY SUBDIVISION

**PINNACLE** 

DESIGNED BY: CHECKED BY:

PP-04





SUBDIVISION

BAY

**AT LIBERTY** PLAN &

**PINNACLE** JOB NO.: 2090-004-022

DWG. NAME: DESIGNED BY: CHECKED BY:

PP-07

Figure 1.4 - Web Soil Survey (1 of 3)



300

600

Map projection: Web Mercator Corner coordinates: WGS84 Edge tics: UTM Zone 10N WGS84

#### Custom Soil Resource Report

#### MAP LEGEND

å

Ŷ

Δ

**Water Features** 

Transportation

---

00

Background

Spoil Area

Stony Spot

Wet Spot

Other

Rails

**US Routes** 

Major Roads

Local Roads

Very Stony Spot

Special Line Features

Streams and Canals

Interstate Highways

Aerial Photography

#### Area of Interest (AOI)

Area of Interest (AOI)

#### Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

#### Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravelly Spot

Landfill

A Lava Flow

▲ Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

#### MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Kitsap County Area, Washington Survey Area Data: Version 20, Aug 27, 2024

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Jul 31, 2022—Aug 8, 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

# Figure 1.4 - Web Soil Survey (3 of 3) Custom Soil Resource Report

## **Map Unit Legend**

| Map Unit Symbol             | Map Unit Name                                           | Acres in AOI | Percent of AOI |
|-----------------------------|---------------------------------------------------------|--------------|----------------|
| 39                          | Poulsbo gravelly sandy loam, 0 to 6 percent slopes      | 7.8          | 18.8%          |
| 40                          | Poulsbo gravelly sandy loam, 6 to 15 percent slopes     | 25.0         | 60.3%          |
| 41                          | Poulsbo gravelly sandy loam,<br>15 to 30 percent slopes | 8.7          | 20.9%          |
| Totals for Area of Interest |                                                         | 41.5         | 100.0%         |

#### 2. EXISTING CONDITIONS

The project site is located on the north side of State Hwy 305, situated east of the Plat of Baywatch at Poulsbo and west of the Plat of Crystal View. The subject property consists of four undeveloped parcels zoned RL (232601-4-001-2009, 242601-3-003-2008, 242601-3-018-2001, and 242601-3-005-2006), totaling approximately 41 acres. The site generally slopes toward the south, southwest, and west, with elevations ranging from approximately 120 feet to 376 feet. Existing site improvements include a paved/gravel access road (Sunrise Ridge Road), a stormwater detention pond, storm conveyance pipes and ditches, and a sanitary sewer main located on the east side of the project site. Sunrise Ridge Road provides access to the existing onsite utilities and the detention pond. There is also an existing single-family residence with gravel access located on parcel 242601-3-005-2006. The remaining site area is undeveloped and generally covered with dense forest and brush. Refer to Figure 1.2 for existing conditions.

A site investigation conducted by Sewall Wetland Consulting, Inc. identified four (4) onsite wetlands and four (4) streams. Wetlands A and D are classified as Category IV wetlands with a standard 50-foot buffer. Wetlands B and C are classified as Category III wetlands with a standard 150-foot buffer. Streams A, B, and D are classified as Type Ns2 streams with a standard 50-foot buffer. Stream C is classified as a Type Ns1 stream with a standard 75-foot buffer.

According to the NRCS Web Soil Survey (Figure 1.4), onsite soils consist of Poulsbo Gravelly Sandy Loam. Additionally, a subsurface investigation was conducted by Aspect Consulting, in which 14 test pits were excavated to a maximum depth of 13 feet below existing grades. In general, soil conditions consist of a 6-inch to 18-inch layer of topsoil overlying native soils. Native soils encountered on the site consist primarily of Vashon Recessional Outwash, characterized as medium dense, moist, gray-brown sand with silt, gravel, and cobbles; silty sand with gravel and cobbles; and gravel with sand and cobbles. In some test pits, Pre-Vashon Silt was found underlying the outwash. The Pre-Vashon Silt consists of medium dense to dense sand with silt, and silt with sand, with varied degrees of weathering. Perched groundwater seepage was observed at 5 test pit locations at approximately 2 to 7 feet below ground surface. A copy of the Aspect Consulting report is provided in Appendix B.

Stormwater runoff from the project site generally flows toward existing onsite streams, onsite conveyance ditches or pipe systems, or to an offsite public conveyance ditch located along the north side of State Hwy 305 NE. The onsite streams and conveyance systems ultimately discharge into this public ditch, which conveys flows south to Liberty Bay through various pipes and swales. Upstream of the project site, an existing stormwater conveyance system constructed as part of the Crystal View Plat discharges to an onsite stream on the eastern side of the property. Additionally, Maple Height Ave NE and two single-family residences on predominately wooded lots drain by sheet flow onto the project site. Runoff from other upstream areas is generally conveyed through the project site by onsite streams traversing the property.

There are no fuel tanks on the subject property, nor are there any septic systems on or within 100 feet of the site. At the northeastern end of the property, an existing well is located just

north of the site, with the associated 100-foot wellhead protection zone extending into the project area.

#### 3. OFF-SITE ANALYSIS REPORT

An Off-Site Analysis Report has been prepared which discusses the potential drainage impacts associated with the project. This includes an analysis of the drainage conditions upstream and downstream of the site as well as identifying any downstream constraints. See Appendix 'C' for the complete Off-Site Analysis Report detailing the analysis and findings. No negative drainage impacts are expected to be created by the project to the downstream drainage systems and properties based on the observations during this analysis.

#### 4. PERMANENT STORMWATER CONTROL PLAN

The topography of the project site yields two Threshold Discharge Areas (TDA). A detention pond and a detention vault are proposed to meet flow control requirements. The project also proposes two proprietary media treatment facilities to meet stormwater treatment requirements.

The Western Washington Hydrology Model (WWHM) 2012 was used to size the detention ponds. The standard flow control requirements are stormwater discharge shall match developed discharge durations to pre-developed durations from 50% of the 2-year peak flow up to the full 50-year peak flow. According to the WWHM 2012 user manual, the program automatically checks these stream protection flow duration criteria when determining if a stormwater facility passes the Ecology's standard flow control requirements.

#### Predeveloped Site Hydrology

In summary, the project proposes to construct a series of catch basins and pipes that will collect and convey stormwater runoff to a new onsite detention pond on the west area of the project site and a detention vault located in the eastern area of the project site. The detention facilities will release runoff at controlled release rates to Barrantes Creek (Stream C). The total flow control basin area of the project site is approximately 25 acres.

In the predeveloped condition, the project disturbance areas have been modeled as C, Forest, Steep. New and replaced surfaces areas which could not be conveyed to the onsite flow control facilities were modeled as bypass. Refer to Table 4.1 below for the hydrology model predeveloped inputs and Figure 4.1 for Pre-Developed Basin Map.

Table 4.1: Hydrology Model - Predeveloped Land Cover Types

| Threshold Discharge Area #1 |                                |                             |                              |                       |
|-----------------------------|--------------------------------|-----------------------------|------------------------------|-----------------------|
| Area                        | C, Forest,<br>Steep<br>sf (ac) | C, Lawn<br>Steep<br>sf (ac) | Imperv.,<br>Steep<br>sf (ac) | Total<br>sf (ac)      |
| West Basin                  | 897,500<br>(20.604)            | -                           | -                            | 897,500<br>(20.604)   |
| West Basin (Bypass)         | 10,908<br>(0.251)              | -                           | -                            | 10,908<br>(0.251)     |
| Total West Basin            | 908,408<br>(20,854)            | -                           | -                            | 908,408<br>(20,854)   |
|                             |                                |                             |                              |                       |
| East Basin                  | 88,322<br>(2.028)              | -                           | -                            | 88,322<br>(2.028)     |
| East Basin (Bypass)         | -                              | -                           | -                            | -                     |
| Total East Basin            | 88,322<br>(2.028)              |                             |                              | 88,322<br>(2.028)     |
|                             |                                |                             |                              |                       |
| Total Project Area          | 1,114,068<br>(25.575)          | -                           | -                            | 1,114,068<br>(25.575) |

#### **Developed Site Hydrology**

In the developed condition, developed lot impervious areas (walks, driveways, and buildings) were modeled as Rooftops/Flat and developed right-of-way areas (roads and sidewalk) were modeled as Roads/Mod. Pervious areas will receive amended soils and were therefore modeled as C, Pasture, Mod. Refer to Table 4.2 below for the hydrology model developed inputs and Figure 4.2 for Developed Basin Map.

Table 4.2: Hydrology Model - Developed Land Cover Types

| Area                                   | Impervious<br>sf (ac) | Pervious*<br>sf (ac) | Impervious Bypass sf (ac) | Pervious*  Bypass  sf (ac) | Total<br>sf (ac)      |
|----------------------------------------|-----------------------|----------------------|---------------------------|----------------------------|-----------------------|
|                                        |                       | etention Pond        | (West Basin)              |                            |                       |
| 139 Lots                               | 367,595<br>(8.439)    | 256,395<br>(5.886)   | -                         | -                          | 623,989<br>(14.325)   |
| R.O.W. &<br>Tract J                    | -                     | -                    | 8,962<br>(0.206)          | 1,946<br>(0.045)           | -                     |
| Tracts D-I,<br>Tracts K-V, &<br>R.O.W. | 224,137<br>(5.145)    | 158,581<br>(3.641)   | -                         | -                          | 382,718<br>(8.786)    |
| Total Area to<br>Detention Pond        | 591,731<br>(13.584)   | 414,976<br>(9.527)   | -                         | -                          | 1,006,707<br>(23.111) |
| Total Area to Bypass Detention Pond    | -                     | -                    | 8,962<br>(0.206)          | 1,946<br>(0.045)           | 10,908<br>(0.251)     |
|                                        |                       | Detention Vault      | (East Basin)              |                            |                       |
| 9 Lots                                 | 28,652<br>(0.658)     | 20,009<br>(0.459)    | -                         | -                          | 48,661<br>(1.117)     |
| Tracts X & Y,<br>R.O.W.                | 34,446<br>(0.791)     | 13,346<br>(0.306)    | -                         | -                          | 47,792<br>(1.097)     |
| Total Area to<br>Detention Vault       | 63,098<br>(1.339)     | 33,355<br>(0.766)    | -                         | -                          | 96,453<br>(2.214)     |
|                                        |                       |                      |                           |                            |                       |
| Project Total                          | 654,829<br>(15,033)   | 448,331<br>(10.292)  | 8,962<br>(0.206)          | 1,946<br>(0.045)           | 1,114,068<br>(25.575) |

<sup>\*</sup>BMP T5.13: Post-Construction Soil Quality and Depth allows "Lawn" to be modeled as "Pasture".

#### On-Site Stormwater Management System

In the developed condition, native vegetation is not preserved within the project's disturbance limits. List #2 is required for this project using Figure 2.5.1 A from the Supplemental Manual. BMP T5.13: Post-Construction Soil Quality and Depth and BMP T5.10C: Perforated Stub-out Connections may be feasible and will be considered during future building permit application. The area of lawn that will use BMP T5.13 consists of pervious lot areas, open space tracts, pond tracts, and new landscaping within the ROW. Refer to Section 5: Minimum Requirement #5 for more detail.

#### Water Quality System

This project proposes to create more than 5,000 square feet of Pollution Generating Hard Surface (PGHS); therefore, the construction of stormwater treatment facilities is required. This site is a residential project and does not require phosphorus control. The site's stormwater runoff is tributary to Barrantes Creek, two unnamed onsite streams, and Liberty Bay. Liberty Bay is listed as a Category 5 (303d) waterbody for Dissolved Oxygen. The project is required to provide enhanced treatment and a spill control type oil/water separator based on the City's pre-application summary letter for the development. Enhanced Treatment of site stormwater is proposed to be met with the use of two manufactured treatment devices approved for enhanced treatment. A spill control structure will also be provided upstream of each detention facility.

#### **Enhanced Stormwater Treatment:**

The required level of water quality treatment mitigation for the project site is Enhanced Water Quality Treatment. The treatment systems will be located upstream of the detention pond and downstream of the detention vault. The 2-year release rate for the detention vault and peak 15-minute off-line flow rate for the detention pond were calculated utilizing WWHM and are based on the tributary area for each treatment system, as provided in Table 4.3 and depicted in Figure 4.2. With the use of these design flow rates, the size of each treatment system can be calculated.

Table 4.3 - Water Quality Basin Summary

| Water Quality Area                                | Impervious sf (ac) | Pervious<br>sf (ac) | Total<br>sf (ac) | Peak Off-<br>Line Flow<br>(15-minute)<br>cfs |
|---------------------------------------------------|--------------------|---------------------|------------------|----------------------------------------------|
| West Basin (Pond) - West WQ Treatment Facility #1 | 387,929            | 228,501             | 616,430          | 1.312                                        |
|                                                   | (8.906)            | (5.246)             | (14.151)         | (POC #2)                                     |
| West Basin (Pond) - East                          | 187,112            | 111,068             | 298,180          | 0.632                                        |
| WQ Treatment Facility #2                          | (4.296)            | (2.550)             | (6.845)          | (POC #3)                                     |
| East Basin (Vault)                                | 63,098             | 33,355              | 96,453           | 0.334                                        |
| WQ Treatment Facility #3                          | (1.339)            | (0.766)             | (2.214)          | (POC #1)                                     |

Three underground BioPod Biofilter units are proposed to achieve the enhanced treatment standard. Oldcastle Infrastructure, Inc.'s BioPod Biofilters have a General Use Level Designation by the Washington State Department of Ecology's (DOE) Emerging stormwater treatment technical program for enhanced treatment.

These media filter systems are flow-based and required to treat the full 2-year release rate if located downstream of a detention facility. For treatment installed upstream of the detention facility, the water quality design flow rate is the peak 15-minute off-line water quality treatment

design flow rate as calculated using WWHM. The approved flow capacity listed by the DOE for BioPod Biofilters is as follows:

WQ Unit #1 Sizing (West Basin - Pond 'West Treatment Facility')

Required Treatment Flow Rate: 1.31 cfs

Proposed BioPod Biofilter Unit: 15' x 38' Max. Treatment Flow Rate: 1.31 cfs

WQ Unit #2 Sizing (West Basin - Pond 'East Treatment Facility')

Required Treatment Flow Rate: 0.63 cfs

Proposed BioPod Biofilter Unit: 10' x 24' Max. Treatment Flow Rate: 0.72 cfs

WQ Unit #3 Sizing (East Basin - Vault #1)

Required Treatment Flow Rate: 0.334 cfs

Proposed BioPod Biofilter Unit: 8' x 16'
Max. Treatment Flow Rate: 0.384 cfs

#### Flow Control System

This project proposes to create more than 10,000 square feet of total effective impervious surface in a TDA; therefore, flow control must be provided to reduce the impacts of stormwater runoff from hard surfaces and land cover conversions. A new detention pond and detention vault are proposed to meet this requirement.

#### West Basin (Detention Pond):

The flow control system proposed for the western area of the site is a detention pond located at a low point on the southwest end of the project site. The proposed detention pond has been designed based on the design criteria and methods of analysis from the SWMMWW.

#### East Basin (Detention Vault):

The flow control system proposed for the eastern area of the site is a detention vault located at low point on the southeast end of the project site. The proposed detention vault has been designed based on the design criteria and methods of analysis from the SWMMWW.

#### Design Criteria

The onsite flow control facilities consist of a detention pond and a detention vault, each with a three-orifice control riser. The detention pond will discharge detained stormwater to an onsite stream (Barrantes Creek) on the western side of the project site. The detention vault in the east basin will discharge detained stormwater to an onsite stream located on the eastern side of the project site. The control riser orifices and the detention volumes have been sized to release detained stormwater at rates compliant with the performance standards discussed previously based on the pre-developed and developed land use basins.

Tables 4.4A & 4.4B below summarize the input values used to evaluate each of the proposed ponds.

#### Flow Bypass (Sec III-2.4 Stormwater Manual)

On some sites, topography can make it difficult or costly to collect all target surface runoff for conveyance to the onsite flow control facility. Compensatory mitigation by the flow control facility must be provided so that the net effect at the point of convergence downstream is the same with or without the bypass.

A small portion of the developed site and offsite improvements will bypass the detention facilities unmitigated and are not traded for a non-target surface. As shown on the developed basin map, Figure 4.2, this includes portions of new onsite and offsite roadway. These areas have been mitigated for in the detention analysis and considered mitigated bypass.

- 1) Runoff from both the bypass area and the Flow Control BMP converges within a quarter-mile downstream of the project site discharge location.
  - Response: Project bypass and flow control facility discharge will converge within a quarter-mile.
- The Flow Control BMP is designed to compensate for the uncontrolled bypass area such that the net effect at the point of convergence downstream is the same with or without bypass.
  - Response: Compensatory mitigation has been provided as a part of the proposed flow control facility so that the net effect at the point of convergence downstream is the same with or without the bypass.
- 3) The 100-year peak discharge from the bypass area will not exceed 0.4 cfs.
  - Response: The increase in the 100-year peak discharge is less than 0.4 cfs as shown in the WWHM report titled "Detention Pond (West Basin)" under POC #2. See Appendix A for WWHM report.
- 4) Runoff from the bypass area will not create a significant adverse impact to downstream drainage systems or properties.
  - Response: A significant adverse impact to the downstream drainage system is not anticipated.
- 5) Runoff Treatment requirements applicable to the bypass area are met.
  - Response: Applicable water quality requirements have been met. Less than 5,000 sf of new plus replaced PGHS (Approx 4,818 sf) will bypass untreated.

Table 4.4A Detention Pond Parameters (West Basin)

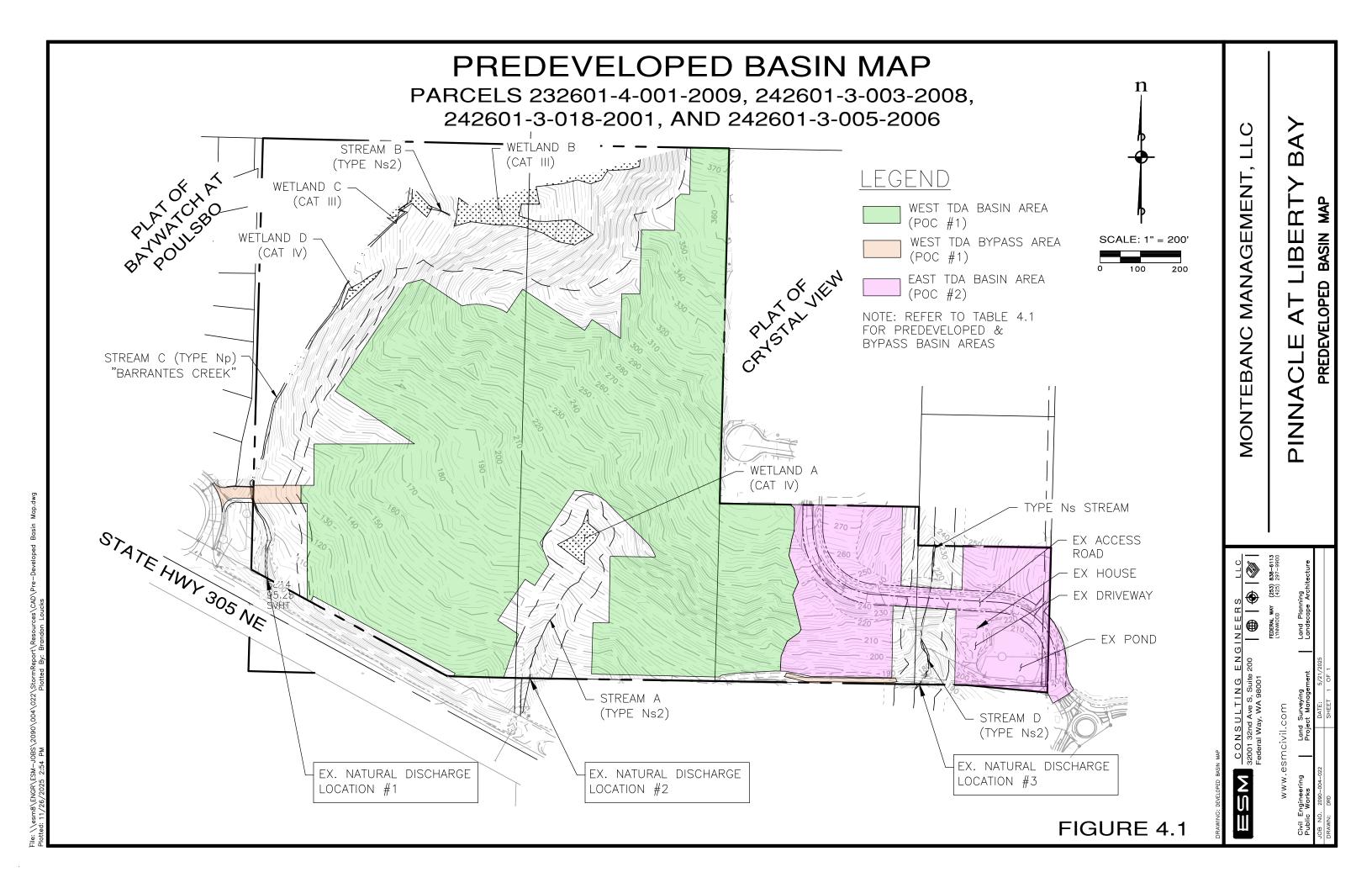
| Parameter             | WWHM<br>input               | Proposed                    |
|-----------------------|-----------------------------|-----------------------------|
| Bottom Square footage | 21,200 sf                   | 27,134 sf                   |
| Storage Depth         | 10 ft                       | 10 ft                       |
| Effective Depth       | 11 ft                       | 11 ft                       |
| Side Slopes           | 2:1                         | 2:1                         |
| Total Live Storage    | 280,518 cf<br>(6.440 ac-ft) | 303,598 cf<br>(6.970 ac-ft) |

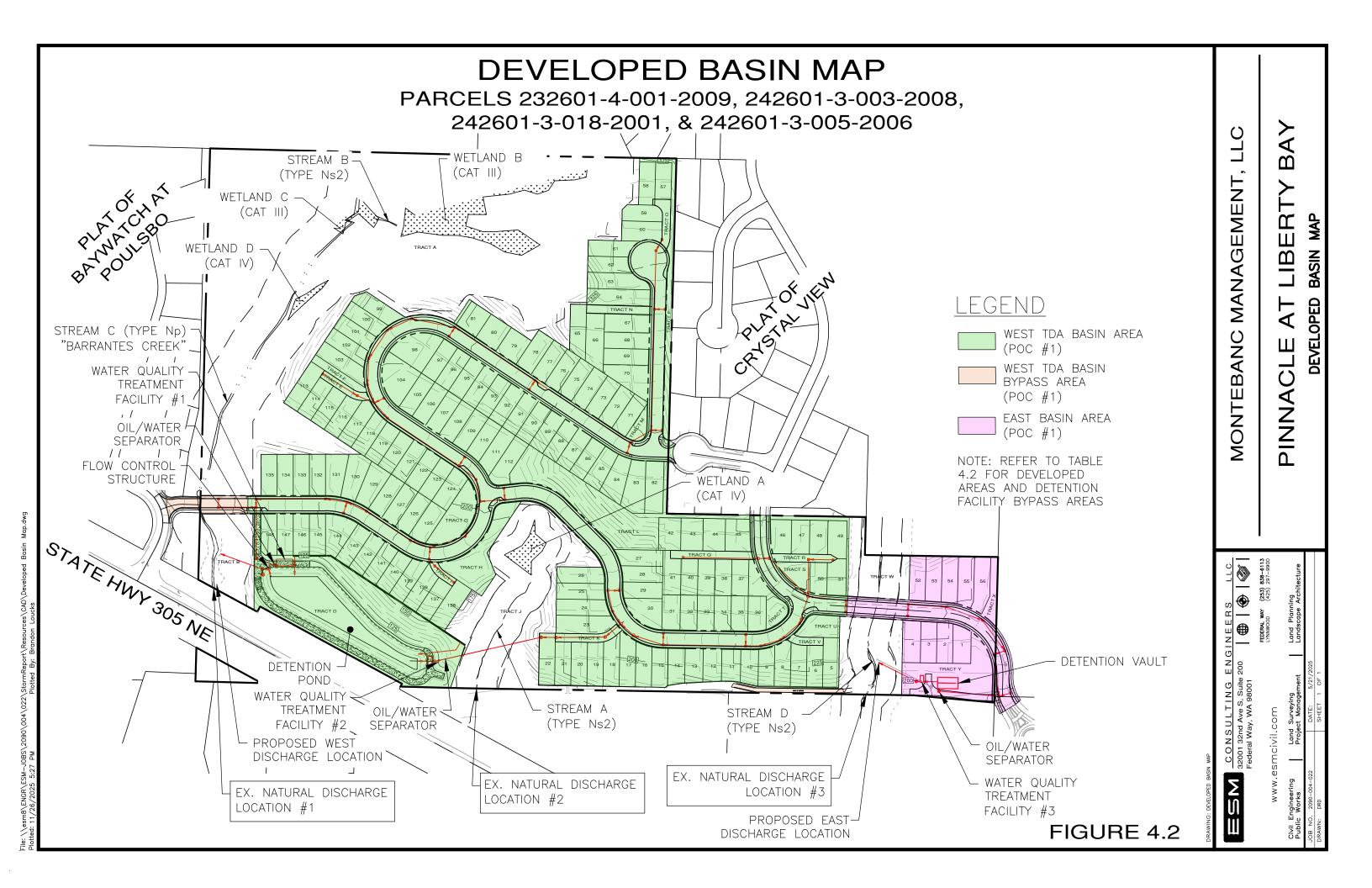
Table 4.4B Detention Vault Parameters (East Basin)

| Parameter             | WWHM<br>Input | Proposed     |
|-----------------------|---------------|--------------|
| Bottom Square footage | 1,300 sf      | 1,300 sf     |
| Storage Depth         | 5 ft          | 5 ft         |
| Effective Depth       | 6 ft          | 6 ft         |
| Total Live Storage    | 6,500 cf      | 6,500 cf     |
| Total Live Storage    | (0.15 ac-ft)  | (0.15 ac-ft) |

Tables 4.5A & 4.5B below show that the peak flows for the proposed detention facilities meet the standard flow control requirements from WWHM. Refer to Appendix A for the Hydraulic / Hydrologic Analysis and Modeling Results.

Table 4.5A: Detention Pond Hydrology Model Peak Flows (West Basin)


| Return   | Flow (cfs)   |           |  |
|----------|--------------|-----------|--|
| Period   | Predeveloped | Developed |  |
| 2-year   | 2.224        | 1.144     |  |
| 10-year  | 4.993        | 2.032     |  |
| 25-year  | 6.887        | 2.583     |  |
| 50-year  | 8.539        | 3.042     |  |
| 100-year | 10.413       | 3.546     |  |


Table 4.5B: Detention Vault Hydrology Model Peak Flows (East Basin)

| Return   | Flow (cfs)   |           |
|----------|--------------|-----------|
| Period   | Predeveloped | Developed |
| 2-year   | 0.320        | 0.334     |
| 10-year  | 0.719        | 0.460     |
| 25-year  | 0.984        | 0.530     |
| 50-year  | 1.210        | 0.584     |
| 100-year | 1.463        | 0.640     |

#### Conventional Conveyance System Analysis and Design

The proposed conveyance system was sized to accommodate the design event in the Supplemental Manual. All public pipe systems were designed to convey the 25-year, 24-hour peak flow rate without surcharging (the water depth in the pipe must not exceed 90% of the pipe diameter). The Conventional Conveyance System Analysis and Design will be provided with the Final Stormwater Site Plan Report.





#### 5. DISCUSSION OF MINIMUM REQUIREMENTS

All minimum requirements apply to the new and replaced hard surfaces and converted vegetation areas using Figure I-3.1 from the SWMMWW. Below, each minimum requirement is listed and how the project satisfies them.

#### Minimum Requirement #1 - Preparation of Stormwater Site Plans

This SSP report and accompanying plans satisfy this requirement.

#### Minimum Requirement #2 - Construction Stormwater Pollution Prevention Plan

The project site will be cleared and graded per the approved TESC plans and following the guidelines of a Construction Stormwater Pollution Prevention Plan (CSWPPP). A SWPPP and Erosion and Sedimentation Control plans will be provided during the Final Engineering review phase.

#### Minimum Requirement #3 - Source Control of Pollution

Source Control BMPs will be identified in the SWPPP provided during the Final Engineering review phase.

#### Minimum Requirement #4 - Preservation of Natural Drainage Systems and Outfalls

The natural discharge location for the project site's west basin is the public conveyance system located along State Hwy 305 NE and Barrantes Creek. The natural discharge location for the project site's east basin is the buffer associated with an onsite stream. Stormwater discharge from the project site will be routed to these areas to maintain the natural drainage pattern.

#### Minimum Requirement #5 - On-site Stormwater Management

List #2 is required for this project using Figure 2.5.1 A from the Supplemental Manual. Below, each On-Site Stormwater Management BMP is considered for each surface in the order they are given in List #2. Each BMP was determined to be infeasible prior to continuing to the next BMP for that surface on the list:

#### Lawn and landscaped areas:

1. BMP T5.13: Post-Construction Soil Quality and Depth:

All disturbed areas which will not receive hard surfacing in the post-developed condition shall utilize amended soils.

#### Roofs:

1. BMP T5.30: Full Dispersion or BMP T5.10A: Downspout Full Infiltration

The design criteria for full dispersion cannot be met; the site cannot accommodate a 100-foot native vegetation flow path. The design criteria for full infiltration also cannot be met; the geotechnical report indicates the presence of glacial till soils and perched water table which are too shallow to allow for sufficient separation from infiltration BMPs.

#### 2. BMP T7.30: Bioretention Cells, Swales, and Planter Boxes

The design criteria for bioretention cannot be met; the geotechnical report indicates the presence of glacial till soils and perched water table which are too shallow to allow for sufficient separation from infiltration BMPs.

#### 3. BMP T5.10B: Downspout Dispersion Systems

The design criteria for downspout dispersion cannot be met; the site cannot accommodate minimum lengths for vegetated flow path segments. Therefore, this BMP is infeasible.

#### 4. BMP T5.10C: Perforated Stub-out Connections

Perforated stub-out connections may be feasible for the individual lots. Further evaluation will be provided once the building footprints and finished grade surfaces are known. To be provided with future building permit applications.

#### Other Hard Surfaces:

#### 1. BMP T5.30: Full Dispersion

The design criteria for full dispersion cannot be met; the site cannot accommodate a 100-foot native vegetation flow path. Therefore, this BMP is infeasible.

#### 2. BMP T5.15 Permeable Pavements

The design criteria for permeable pavement cannot be met; the geotechnical report indicates the presence of glacial till soils and perched water table which are too shallow to allow for sufficient separation from infiltration BMPs. Therefore, this BMP is infeasible.

#### 3. BMP T7.30: Bioretention Cells, Swales, and Planter Boxes

The design criteria for bioretention cannot be met; the geotechnical report indicates the presence of glacial till soils and perched water table which are too shallow to allow for sufficient separation from infiltration BMPs.

#### 4. BMP T5.12: Sheet Flow Dispersion or BMP T5.11: Concentrated Flow Dispersion

Sheet and Concentrated Flow Dispersion were evaluated as an option to manage runoff from the plat's infrastructure improvements. There is limited space available to disperse runoff through the required 10 to 25 of vegetation within the ROW or proposed tracts. Sheet flow may be feasible for the individual lots. Further evaluation will be provided once the building footprints and finished grade surfaces are known. To be provided with future building applications.

#### Minimum Requirement #6 - Runoff Treatment

Stormwater treatment will be provided for the site pollution generating surfaces at a minimum. Refer to Section 4: Water Quality System for more information.

#### Minimum Requirement #7 - Flow Control

The following circumstances require achievement of the standard flow control requirement for western Washington:

- 1. Projects in which the total of effective impervious surfaces is 10,000 square feet or more in a threshold discharge area, or
- Projects that convert ¾ acres or more of vegetation to lawn or landscape, or convert 2.5 acres or more of native vegetation to pasture in a threshold discharge area, and from which there is a surface discharge in a natural or manmade conveyance system from the site, or
- 3. Projects that through a combination of effective hard surfaces and converted vegetation areas cause a 0.15 cubic feet per second increase in the 100-year flow frequency from a threshold discharge area as estimated using the Western Washington Hydrology Model or other approved continuous simulation model and 15-minute time steps.

This project totals more than 10,000 square feet of effective impervious surfacing and is therefore subject to the standard flow control requirement for Western Washington. Stormwater discharges shall match developed discharge durations to pre-developed durations for the range of pre-developed discharge rates from 50% of the 2-year peak flow up to the full 50-year peak flow. The pre-developed condition to be matched shall be a forested land cover.

To achieve this standard, a detention pond and two detention vaults are proposed with multiorifice riser structures to provide metered release of detained stormwater to the required standard. See Sections 5 and 8 of the report for further design details.

Refer to Section 4: Flow Control System for more information on the detention facilities.

#### Minimum Requirement #8 - Wetlands Protection

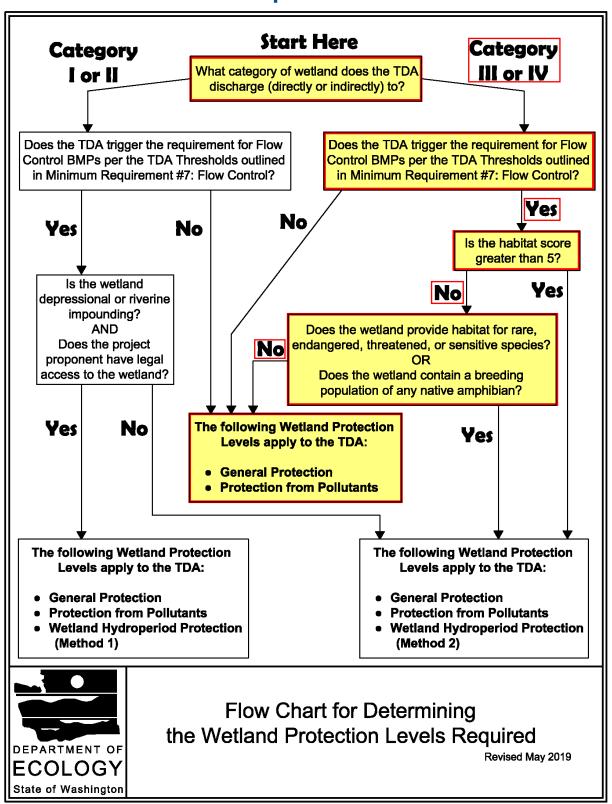
Four delineated wetlands exist on the project site. A Wetland Mitigation Plan has been prepared by Sewall Wetland Consulting, Inc. for management actions that will be implemented to minimize or avoid deleterious changes to these wetlands.

According to Figure I-3.5 of the SWMMWW, the project is required to apply the following levels of wetland protection to the TDA for Wetlands A, C, & D.

- General Protection
- Protection from Pollutants

According to Figure I-3.5 of the SWMMWW, the project is required to apply the following levels of wetland protection to the TDA for Wetland B.

- General Protection
- Protection from Pollutants
- Wetland Hydroperiod Protection (Method 2)


Wetland B has been analyzed using Method 2 criteria from Appendix I-C.4 of the SWMMWW. The results of the analysis show that the project will have no adverse impact on the Wetland B. Refer to Appendix D for further information on the wetland hydroperiod protection analysis and results. Refer to Figure I-3.5 at the end of this section for the Flow Chart for Determining Wetland Protection Level Requirements for level of protection required.

#### Minimum Requirement #9 - Operations and Maintenance

The Operations and Maintenance Manual will be provided during the Final Engineering review process.

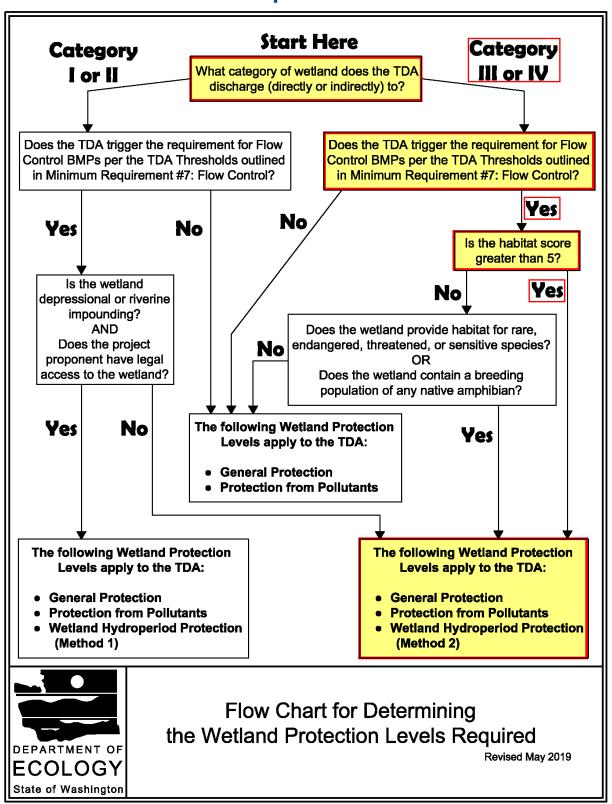

#### Wetland A (Category IV, habitat score of 4)

Figure I-3.5: Flow Chart for Determining Wetland Protection Level Requirements



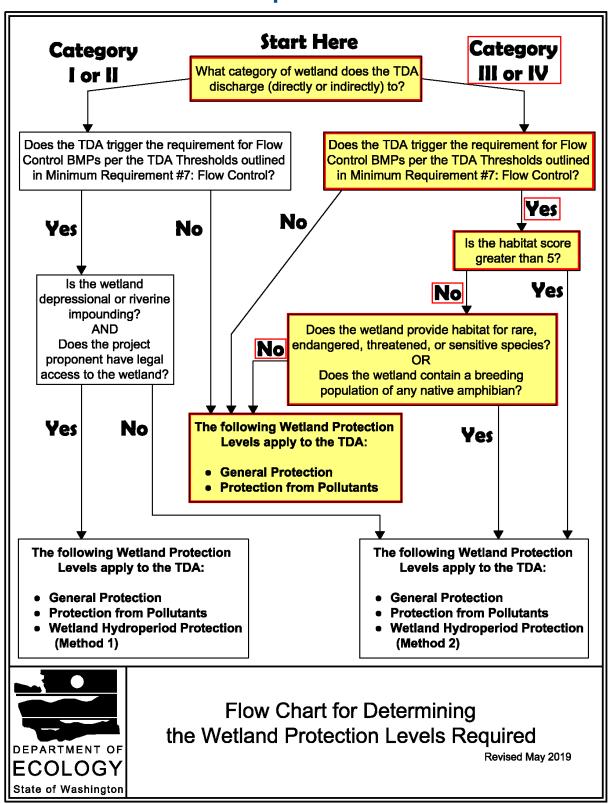

#### Wetland B (Category III, habitat score of 6)

Figure I-3.5: Flow Chart for Determining Wetland Protection Level Requirements



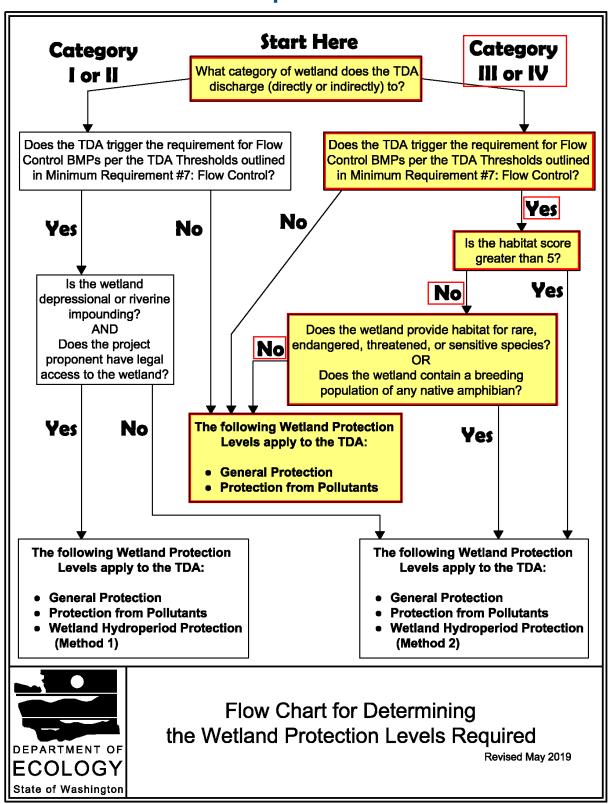

#### Wetland C (Category III, habitat score of 5)

Figure I-3.5: Flow Chart for Determining Wetland Protection Level Requirements



#### Wetland D (Category IV, habitat score of 4)

Figure I-3.5: Flow Chart for Determining Wetland Protection Level Requirements

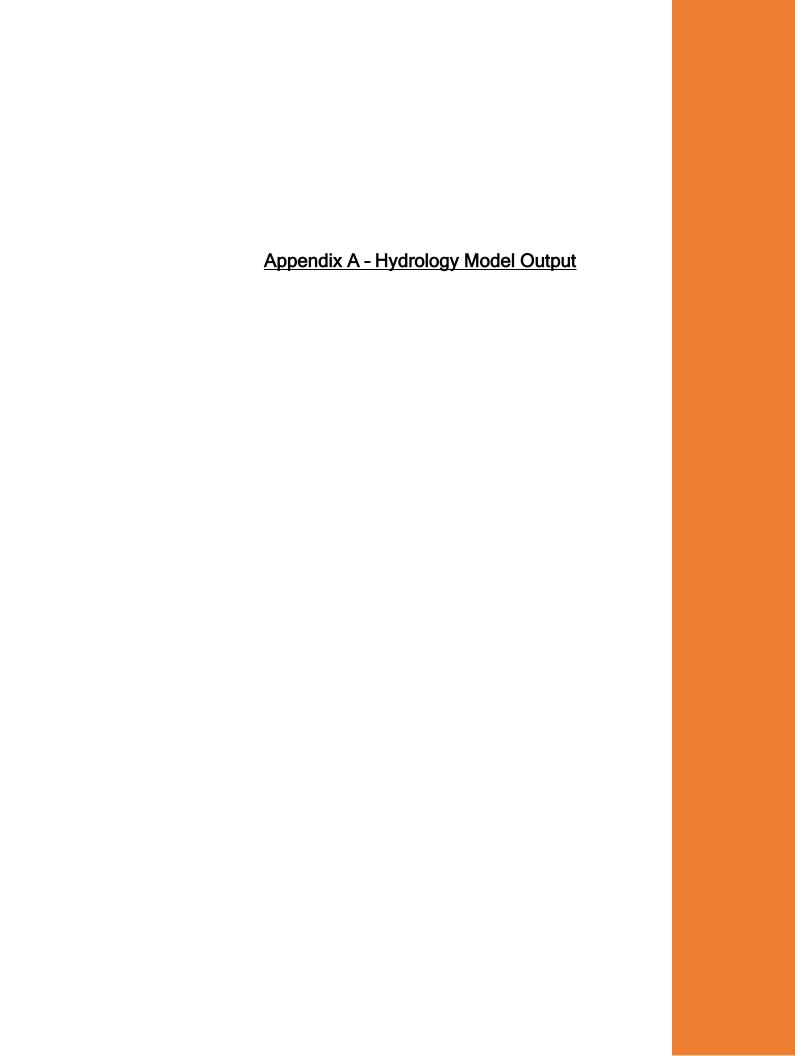


#### 6. Construction Stormwater Pollution Prevention Plan (SWPPP)

A Construction Stormwater Pollution Prevention Plan will be provided during Final Engineering submittal. The SWPPP will address the 13 required elements from the Washington State Department of Ecology and the construction drawings will contain full Erosion and Sedimentation Control Plans, Notes and Details.

#### 7. Special Reports and Studies

The following reports were prepared for this project and are included as an appendix within this report:


- *Geotechnical Engineering Report*, Aspect Consulting, Dated February 13, 2025. See Appendix 'B' of this report and addendum.
- City of Poulsbo Critical Area Report Parcels #2322260114001-2009 & 2008, Sewall Wetland Consulting, Inc., Dated July 14, 2025 and subsequent addendum. This report has been included with the submittal documents.

#### 8. Other Permits

Building and NPDES permits will be required for this project, together with permits for utility connections. An Army Corp of Engineers Section 404 permit will also be required.

#### 9. Operations and Maintenance Manual

An Operation and Maintenance Manual will be provided in the appendix of this report during the final engineering submittal.



# WWHM2012 PROJECT REPORT DETENTION POND (WEST BASIN)

#### General Model Information

WWHM2012 Project Name: 2025-11-10 - Pond

Site Name: Pinnacle at Liberty Bay

Site Address:

City: Poulsbo
Report Date: 11/13/2025
Gage: Quilcene
Data Start: 1948/10/01
Data End: 2009/09/30
Timestep: 15 Minute
Precip Scale: 0.800

Version Date: 2024/06/28

Version: 4.3.1

#### **POC Thresholds**

Low Flow Threshold for POC1: 50 Percent of the 2 Year High Flow Threshold for POC1: 50 Year Low Flow Threshold for POC2: 50 Percent of the 2 Year 50 Year High Flow Threshold for POC2: Low Flow Threshold for POC3: 50 Percent of the 2 Year High Flow Threshold for POC3: 50 Year Low Flow Threshold for POC4: 50 Percent of the 2 Year High Flow Threshold for POC4: 50 Year

## Landuse Basin Data Predeveloped Land Use

#### Pre-Developed Pond Basin

Bypass: No

GroundWater: No

Pervious Land Use acre C, Forest, Steep 20.604

Pervious Total 20.604

Impervious Land Use acre

Impervious Total 0

Basin Total 20.604

Element Flow Componants: Surface Interflow

Componant Flows To:

POC 1 POC 1

Groundwater

Pre-Developed Bypass Basin

Bypass: No

GroundWater: No

Pervious Land Use acre C, Forest, Steep 0.251

**Pervious Total** 0.251

Impervious Land Use acre

Impervious Total 0

**Basin Total** 0.251

**Element Flow Componants:** Surface Interflow

Componant Flows To: POC 1 POC 1 Groundwater

**Pre-Developed Bypass Flows** 

Bypass: No

GroundWater: No

Pervious Land Use acre C, Forest, Steep 0.251

**Pervious Total** 0.251

Impervious Land Use acre

Impervious Total 0

**Basin Total** 0.251

**Element Flow Componants:** Surface Interflow

Componant Flows To: POC 2 POC 2 Groundwater

Predev WQ Treatment Inflow (West)

Bypass: No

GroundWater: No

Pervious Land Use acre C, Forest, Steep 14.151

**Pervious Total** 14.151

Impervious Land Use acre

Impervious Total 0

**Basin Total** 14.151

**Element Flow Componants:** Surface Interflow

Componant Flows To: POC 3 POC 3 Groundwater

Predev WQ Treatment Inflow (East)

Bypass: No

GroundWater: No

Pervious Land Use acre C, Forest, Steep 6.845

**Pervious Total** 6.845

Impervious Land Use acre

Impervious Total 0

**Basin Total** 6.845

**Element Flow Componants:** Surface Interflow

Componant Flows To: POC 4 POC 4 Groundwater

#### Mitigated Land Use

#### **Developed Pond Basin**

Bypass: No

GroundWater: No

Pervious Land Use acre C, Pasture, Mod 9.527

Pervious Total 9.527

Impervious Land Use acre ROADS MOD 5.145 ROOF TOPS FLAT 8.439

Impervious Total 13.584

Basin Total 23.111

**Element Flow Componants:** 

Surface Interflow Groundwater

Componant Flows To:

Trapezoidal Pond 1 Trapezoidal Pond 1

**Developed Bypass Basin** 

Bypass: Yes

GroundWater: No

Pervious Land Use acre C, Pasture, Mod 0.045

Pervious Total 0.045

Impervious Land Use acre ROADS MOD 0.206

Impervious Total 0.206

Basin Total 0.251

Element Flow Componants: Surface Interflow

Componant Flows To:

POC 1 POC 1

Groundwater

**Developed Bypass Flows** 

Bypass: No

GroundWater: No

Pervious Land Use acre C, Pasture, Mod 0.045

Pervious Total 0.045

Impervious Land Use acre ROADS MOD 0.206

Impervious Total 0.206

Basin Total 0.251

Element Flow Componants: Surface Interflow

Componant Flows To:

POC 2 POC 2

Groundwater

## WQ Treatment Inflow (West)

Bypass: No

GroundWater: No

Pervious Land Use acre C, Pasture, Mod 5.246

**Pervious Total** 5.246

Impervious Land Use acre **ROADS MOD** 3.268 **ROOF TOPS FLAT** 5.638

Impervious Total 8.906

**Basin Total** 14.152

**Element Flow Componants:** Surface Interflow

Componant Flows To: POC 3 POC 3 Groundwater

## WQ Treatment Inflow (East)

Bypass: No

GroundWater: No

Pervious Land Use acre C, Pasture, Mod 2.55

**Pervious Total** 2.55

Impervious Land Use acre **ROADS MOD** 1.495 **ROOF TOPS FLAT** 2.801

Impervious Total 4.296

**Basin Total** 6.846

**Element Flow Componants:** Surface Interflow

Componant Flows To: POC 4 POC 4 Groundwater

# Routing Elements Predeveloped Routing

#### Mitigated Routing

#### Trapezoidal Pond 1

Bottom Length: 212.00 ft. Bottom Width: 100.00 ft. Depth: 11 ft.

Volume at riser head: 6.4398 acre-feet.

 Side slope 1:
 2 To 1

 Side slope 2:
 2 To 1

 Side slope 3:
 2 To 1

 Side slope 4:
 2 To 1

Discharge Structure

Riser Height: 10 ft. Riser Diameter: 18 in.

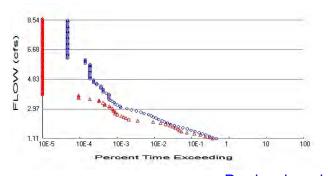
Orifice 1 Diameter: 3.625 in. Elevation:0 ft. Orifice 2 Diameter: 3.500 in. Elevation:6.2 ft. Orifice 3 Diameter: 3.688 in. Elevation:8.6 ft.

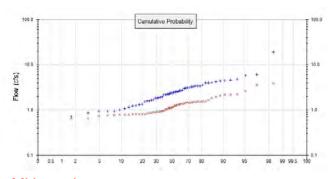
Element Outlets:

Outlet 1 Outlet 2

Outlet Flows To:

#### Pond Hydraulic Table


| Stage(feet) | Area(ac.) | Volume(ac-ft.) | Discharge(cfs) |       |
|-------------|-----------|----------------|----------------|-------|
| 0.0000      | 0.486     | 0.000          | 0.000          | 0.000 |
| 0.1222      | 0.490     | 0.059          | 0.124          | 0.000 |
| 0.2444      | 0.493     | 0.119          | 0.176          | 0.000 |
| 0.3667      | 0.497     | 0.180          | 0.215          | 0.000 |
| 0.4889      | 0.500     | 0.241          | 0.249          | 0.000 |
| 0.6111      | 0.504     | 0.302          | 0.278          | 0.000 |
| 0.7333      | 0.507     | 0.364          | 0.305          | 0.000 |
| 0.8556      | 0.511     | 0.426          | 0.329          | 0.000 |
| 0.9778      | 0.515     | 0.489          | 0.352          | 0.000 |
| 1.1000      | 0.518     | 0.552          | 0.374          | 0.000 |
| 1.2222      | 0.522     | 0.616          | 0.394          | 0.000 |
| 1.3444      | 0.525     | 0.680          | 0.413          | 0.000 |
| 1.4667      | 0.529     | 0.745          | 0.431          | 0.000 |
| 1.5889      | 0.533     | 0.809          | 0.449          | 0.000 |
| 1.7111      | 0.536     | 0.875          | 0.466          | 0.000 |
| 1.8333      | 0.540     | 0.941          | 0.482          | 0.000 |
| 1.9556      | 0.544     | 1.007          | 0.498          | 0.000 |
| 2.0778      | 0.547     | 1.074          | 0.514          | 0.000 |
| 2.2000      | 0.551     | 1.141          | 0.528          | 0.000 |
| 2.3222      | 0.555     | 1.209          | 0.543          | 0.000 |
| 2.4444      | 0.558     | 1.277          | 0.557          | 0.000 |
| 2.5667      | 0.562     | 1.345          | 0.571          | 0.000 |
| 2.6889      | 0.566     | 1.414          | 0.584          | 0.000 |
| 2.8111      | 0.570     | 1.484          | 0.597          | 0.000 |
| 2.9333      | 0.573     | 1.554          | 0.610          | 0.000 |
| 3.0556      | 0.577     | 1.624          | 0.623          | 0.000 |
| 3.1778      | 0.581     | 1.695          | 0.635          | 0.000 |
| 3.3000      | 0.585     | 1.766          | 0.647          | 0.000 |
| 3.4222      | 0.589     | 1.838          | 0.659          | 0.000 |
| 3.5444      | 0.592     | 1.910          | 0.671          | 0.000 |
| 3.6667      | 0.596     | 1.983          | 0.682          | 0.000 |
| 3.7889      | 0.600     | 2.056          | 0.694          | 0.000 |


| 3.9111<br>4.0333<br>4.1556<br>4.2778<br>4.4000<br>4.5222<br>4.6444<br>4.7667<br>4.8889<br>5.0111<br>5.1333<br>5.2556<br>5.3778<br>5.5000<br>5.6222 | 0.604<br>0.608<br>0.612<br>0.616<br>0.619<br>0.623<br>0.627<br>0.631<br>0.635<br>0.639<br>0.643<br>0.647<br>0.651<br>0.655<br>0.659 | 2.129<br>2.204<br>2.278<br>2.353<br>2.429<br>2.505<br>2.581<br>2.658<br>2.736<br>2.814<br>2.892<br>2.971<br>3.050<br>3.130<br>3.210 | 0.705<br>0.716<br>0.726<br>0.737<br>0.748<br>0.758<br>0.768<br>0.778<br>0.788<br>0.798<br>0.807<br>0.817<br>0.826<br>0.836<br>0.845 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 5.7444<br>5.8667<br>5.9889<br>6.1111<br>6.2333<br>6.3556<br>6.4778<br>6.6000<br>6.7222<br>6.8444<br>6.9667<br>7.0889<br>7.2111<br>7.3333<br>7.4556 | 0.663<br>0.667<br>0.671<br>0.675<br>0.679<br>0.683<br>0.687<br>0.691<br>0.695<br>0.700<br>0.704<br>0.708<br>0.712<br>0.716<br>0.720 | 3.291<br>3.373<br>3.454<br>3.537<br>3.619<br>3.703<br>3.787<br>3.871<br>3.956<br>4.041<br>4.127<br>4.213<br>4.300<br>4.387<br>4.475 | 0.854<br>0.863<br>0.872<br>0.881<br>0.951<br>1.030<br>1.082<br>1.126<br>1.164<br>1.199<br>1.232<br>1.262<br>1.291<br>1.319<br>1.346 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 |
| 7.5778<br>7.7000<br>7.8222<br>7.9444<br>8.0667<br>8.1889<br>8.3111<br>8.4333<br>8.5556<br>8.6778<br>8.8000<br>8.9222<br>9.0444<br>9.1667           | 0.724<br>0.729<br>0.733<br>0.737<br>0.741<br>0.745<br>0.750<br>0.754<br>0.758<br>0.763<br>0.767<br>0.771<br>0.775<br>0.780          | 4.563<br>4.652<br>4.742<br>4.832<br>4.922<br>5.013<br>5.104<br>5.196<br>5.289<br>5.382<br>5.475<br>5.569<br>5.664<br>5.759          | 1.371<br>1.396<br>1.420<br>1.444<br>1.467<br>1.511<br>1.532<br>1.553<br>1.676<br>1.758<br>1.823<br>1.879<br>1.930<br>1.977          | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                   |
| 9.2889<br>9.4111<br>9.5333<br>9.6556<br>9.7778<br>9.9000<br>10.022<br>10.144<br>10.267<br>10.389<br>10.511<br>10.633<br>10.756<br>10.878           | 0.784<br>0.788<br>0.793<br>0.797<br>0.801<br>0.806<br>0.810<br>0.815<br>0.819<br>0.824<br>0.828<br>0.832<br>0.837<br>0.841          | 5.854<br>5.951<br>6.047<br>6.145<br>6.242<br>6.341<br>6.439<br>6.539<br>6.639<br>6.739<br>6.840<br>6.942<br>7.044<br>7.146          | 1.977<br>2.022<br>2.064<br>2.105<br>2.144<br>2.182<br>2.271<br>3.123<br>4.413<br>5.833<br>7.093<br>7.981<br>8.580<br>9.091          | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000          |

 11.000
 0.846
 7.249
 9.569
 0.000

 11.122
 0.850
 7.353
 10.02
 0.000

## Analysis Results





+ Predeveloped

x Mitigated

Predeveloped Landuse Totals for POC #1

Total Pervious Area: 20.855

Total Impervious Area: 0

Mitigated Landuse Totals for POC #1 Total Pervious Area: 9.572 Total Impervious Area: 13.79

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1

 Return Period
 Flow(cfs)

 2 year
 2.223639

 5 year
 3.740141

 10 year
 4.993414

 25 year
 6.886587

 50 year
 8.538741

 100 year
 10.412791

Flow Frequency Return Periods for Mitigated. POC #1

Return PeriodFlow(cfs)2 year1.1437135 year1.64628910 year2.0317625 year2.58271150 year3.042128100 year3.545773

#### **Annual Peaks**

Annual Peaks for Predeveloped and Mitigated. POC #1

| Year | Predeveloped | Mitigated |
|------|--------------|-----------|
| 1949 | 4.453        | 1.353     |
| 1950 | 1.336        | 0.789     |
| 1951 | 3.160        | 1.396     |
| 1952 | 1.534        | 0.846     |
| 1953 | 1.846        | 1.250     |
| 1954 | 4.437        | 1.525     |
| 1955 | 4.197        | 0.950     |
| 1956 | 19.255       | 1.460     |
| 1957 | 3.401        | 1.650     |
| 1958 | 4.607        | 0.884     |

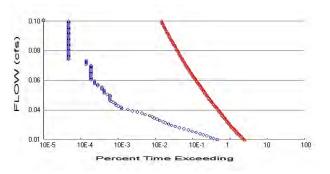
## Ranked Annual Peaks

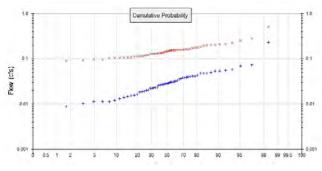
| rantoa / tinidai i batto                                   |              |           |  |
|------------------------------------------------------------|--------------|-----------|--|
| Ranked Annual Peaks for Predeveloped and Mitigated. POC #1 |              |           |  |
| Rank                                                       | Predeveloped | Mitigated |  |
| 1                                                          | 19.2549      | 3.8738    |  |
| 2                                                          | 6.0740       | 3.5243    |  |
| 3                                                          | 5.7720       | 2.6214    |  |

## **Duration Flows**

## The Facility PASSED

| Flow(cfs) 1.1118 1.1868 1.2619 1.3369 1.4119 1.4869 1.5619 1.6370 1.7120 1.7870 1.8620 1.9370 2.0121 2.0871 2.1621 2.3871 2.3121 2.3871 2.4622 2.5372 2.6122 2.6872 2.6122 2.6872 2.7622 2.8373 2.9123 2.9873 3.0623 3.1373 3.2124 3.2874 3.3624 3.4374 3.5124 3.5875 3.6625 3.7375 3.8125 3.8875 3.8875 3.89626 4.0376 4.1126 4.1876 4.2626 4.3377 4.4127 | Predev 9623 7809 6389 5142 4173 3367 2661 2069 1625 1246 945 722 577 478 397 343 279 237 199 178 149 115 92 70 52 39 27 26 22 19 18 16 14 13 13 13 13 13 13 | Mit 7649 6220 4887 3640 2511 1589 1151 1019 916 776 673 569 433 311 198 76 44 37 32 28 22 19 19 17 16 14 13 10 9 7 7 4 2 2 2 0 0 0 0 0 0 0 0 0 | Percentage 79 79 76 70 60 47 43 49 56 62 71 78 75 65 49 22 15 16 15 16 20 24 32 41 51 50 45 52 50 43 50 0 0 0 0 0 0 0 0 0 | Pass/Fail Pass Pass Pass Pass Pass Pass Pass Pas |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 3.9626<br>4.0376<br>4.1126<br>4.1876<br>4.2626                                                                                                                                                                                                                                                                                                             | 11<br>9<br>9<br>9<br>8                                                                                                                                      | 0<br>0<br>0<br>0                                                                                                                               | 0<br>0<br>0<br>0                                                                                                          | Pass<br>Pass<br>Pass<br>Pass<br>Pass             |


| 5.0878           | 4                | 0      | 0      | Pass         |
|------------------|------------------|--------|--------|--------------|
| 5.1629           | 4                | 0      | 0      | Pass         |
| 5.2379           | 4                | 0      | 0      | Pass         |
| 5.3129           | 4                | 0      | 0      | Pass         |
| 5.3879           | 4                | 0      | 0      | Pass         |
| 5.4629           | 4                | 0      | 0      | Pass         |
| 5.5380           | 4                | 0      | 0      | Pass         |
| 5.6130           | 4                | 0      | 0      | Pass         |
| 5.6880           | 4                | 0      | 0      | Pass         |
| 5.7630           | 4                | 0      | 0      | Pass         |
| 5.8380           | 3<br>3<br>3<br>3 | 0      | 0      | Pass         |
| 5.9131           | 3                | 0      | 0      | Pass         |
| 5.9881           | 3                | 0      | 0      | Pass         |
| 6.0631           |                  | 0      | 0      | Pass         |
| 6.1381           | 1                | 0      | 0      | Pass         |
| 6.2131           | 1                | 0      | 0      | Pass         |
| 6.2882           | 1                | 0      | 0      | Pass         |
| 6.3632           | 1                | 0      | 0      | Pass         |
| 6.4382           | 1                | 0      | 0      | Pass         |
| 6.5132           | 1                | 0      | 0      | Pass         |
| 6.5882           | 1                | 0      | 0      | Pass         |
| 6.6633           | 1                | 0      | 0      | Pass         |
| 6.7383           | 1                | 0      | 0      | Pass         |
| 6.8133           | 1                | 0      | 0      | Pass         |
| 6.8883           | 1                | 0      | 0      | Pass         |
| 6.9633           | 1                | 0      | 0      | Pass         |
| 7.0384           | 1                | 0      | 0      | Pass         |
| 7.1134           | 1                | 0      | 0      | Pass         |
| 7.1884           | 1                | 0      | 0      | Pass         |
| 7.2634           | 1                | 0      | 0      | Pass         |
| 7.3384           | 1<br>1           | 0      | 0      | Pass         |
| 7.4134           | 1                | 0<br>0 | 0      | Pass         |
| 7.4885           | 1                | 0      | 0      | Pass         |
| 7.5635           | 1                | 0      | 0<br>0 | Pass         |
| 7.6385<br>7.7135 | 1                | 0      | 0      | Pass<br>Pass |
| 7.7885           | 1                | 0      | 0      | Pass         |
| 7.8636           | 1                | 0      | 0      | Pass         |
| 7.9386           | 1                | 0      | 0      | Pass         |
| 8.0136           | 1                | 0      | 0      | Pass         |
| 8.0886           | 1                | 0      | 0      | Pass         |
| 8.1636           | 1                | 0      | 0      | Pass         |
| 8.2387           | 1                | Ö      | 0      | Pass         |
| 8.3137           | 1                | 0      | 0      | Pass         |
| 8.3887           | i                | Ö      | 0      | Pass         |
| 8.4637           | 1                | Ö      | Ö      | Pass         |
| 8.5387           | i                | 0      | Ö      | Pass         |
| 0.0001           | •                | J      | J      | 1 433        |


#### **Water Quality**

Water Quality BMP Flow and Volume for POC #1
On-line facility volume: 3.2384 acre-feet
On-line facility target flow: 3.5148 cfs.
Adjusted for 15 min: 3.5148 cfs. Off-line facility target flow: 2.0044 cfs. Adjusted for 15 min: 2.0044 cfs.

See POC #3 for west WQ Treatment Flow See POC #4 for east WQ Treatment Flow.

#### POC 2





+ Predeveloped

x Mitigated

Predeveloped Landuse Totals for POC #2

Total Pervious Area: 0.251 Total Impervious Area: 0

Mitigated Landuse Totals for POC #2 Total Pervious Area: 0.045 **Total Impervious Area:** 0.206

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #2

Return Period Flow(cfs) 2 year 0.026763 5 year 0.045014 10 year 0.060098 25 year 0.082883 0.102768 50 year 100 year 0.125323

Flow Frequency Return Periods for Mitigated. POC #2

Flow(cfs)

Return Period 0.140104 2 year 5 year 0.184839 10 year 0.218234 25 year 0.264916 50 year 0.303094 100 year 0.344321 The increase in the 100-year peak discharge is less than 0.4 cfs

#### **Annual Peaks**

Annual Peaks for Predeveloped and Mitigated. POC #2

| Year | Predeveloped | Mitigated |
|------|--------------|-----------|
| 1949 | 0.054        | 0.194     |
| 1950 | 0.016        | 0.139     |
| 1951 | 0.038        | 0.159     |
| 1952 | 0.018        | 0.130     |
| 1953 | 0.022        | 0.106     |
| 1954 | 0.053        | 0.208     |
| 1955 | 0.051        | 0.251     |
| 1956 | 0.232        | 0.503     |
| 1957 | 0.041        | 0.173     |
| 1958 | 0.055        | 0.204     |
| 1959 | 0.048        | 0.151     |

## Ranked Annual Peaks

| Named Amidai i Calo                                       |              |           |        |
|-----------------------------------------------------------|--------------|-----------|--------|
| Ranked Annual Peaks for Predeveloped and Mitigated. POC # |              |           | POC #2 |
| Rank                                                      | Predeveloped | Mitigated |        |
| 1                                                         | 0.2317       | 0.5032    |        |
| 2                                                         | 0.0731       | 0.2773    |        |
| 3                                                         | 0.0695       | 0.2513    |        |
| 4                                                         | 0.0576       | 0.2255    |        |

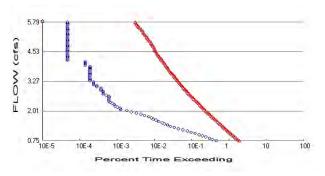
| 5 6 7 8 9 10 11 2 3 14 15 6 7 18 9 10 11 2 13 14 15 6 7 18 9 10 11 2 13 14 15 6 7 18 9 10 11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 0.0555 0.0536 0.0534 0.0505 0.0483 0.0479 0.0476 0.0430 0.0414 0.0409 0.0408 0.0396 0.0389 0.0381 0.0367 0.0359 0.0331 0.0322 0.0321 0.0309 0.0305 0.0304 0.0299 0.0297 0.0288 0.0284 0.0283 0.0275 0.0265 0.0263 0.0267 0.0265 0.0263 0.0261 0.0234 0.0233 0.0226 0.0222 0.0220 0.0203 0.0201 0.0191 0.0190 0.0185 0.0161 0.0157 0.0151 0.0146 0.0139 0.0131 0.0120 0.0113 0.0113 | 0.2120 0.2077 0.2046 0.2040 0.2000 0.1942 0.1844 0.1754 0.1751 0.1662 0.1608 0.1596 0.1595 0.1588 0.1567 0.1564 0.1554 0.1554 0.1554 0.1519 0.1510 0.1473 0.1446 0.1388 0.1388 0.1388 0.1388 0.1388 0.1388 0.1388 0.1399 0.1319 0.1272 0.1278 0.1274 0.1272 0.1276 0.1272 0.1276 0.1174 0.1154 0.1139 0.11063 0.1063 0.1063 0.1063 0.1063 0.1063 |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 55                                                                                                                             | 0.0120                                                                                                                                                                                                                                                                                                                                                                             | 0.1051                                                                                                                                                                                                                                                                                                                                           |
| 56                                                                                                                             | 0.0113                                                                                                                                                                                                                                                                                                                                                                             | 0.1021                                                                                                                                                                                                                                                                                                                                           |

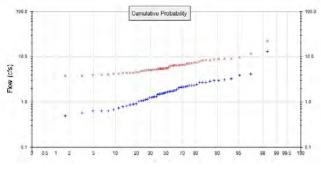
## **Duration Flows**

The Duration Matching Failed

| = 4.4.4.0.       | · matering · | anou           |                |              |
|------------------|--------------|----------------|----------------|--------------|
| Flow(cfs)        | Predev       | Mit            | Percentage     | Pass/Fail    |
| 0.0134           | 9610         | 52788          | 549            | Fail         |
| 0.0143           | 7800         | 48660          | 623            | Fail         |
| 0.0152<br>0.0161 | 6380<br>5127 | 45023<br>41815 | 705<br>815     | Fail<br>Fail |
| 0.0170           | 4158         | 38757          | 932            | Fail         |
| 0.0179           | 3362         | 35997          | 1070           | Fail         |
| 0.0188           | 2656         | 33495          | 1261           | Fail         |
| 0.0197           | 2059         | 31185          | 1514           | Fail         |
| 0.0206           | 1621         | 29025          | 1790           | Fail         |
| 0.0215           | 1245         | 27142          | 2180           | Fail         |
| 0.0224<br>0.0233 | 945<br>723   | 25431<br>23827 | 2691<br>3295   | Fail<br>Fail |
| 0.0233           | 577          | 22373          | 3877           | Fail         |
| 0.0251           | 479          | 21032          | 4390           | Fail         |
| 0.0260           | 397          | 19797          | 4986           | Fail         |
| 0.0269           | 343          | 18683          | 5446           | Fail         |
| 0.0278           | 279          | 17646          | 6324           | <u>Fail</u>  |
| 0.0287           | 237          | 16636          | 7019           | Fail         |
| 0.0296           | 199<br>179   | 15714<br>14780 | 7896<br>8256   | Fail         |
| 0.0305<br>0.0314 | 149          | 13986          | 9386           | Fail<br>Fail |
| 0.0323           | 115          | 13186          | 11466          | Fail         |
| 0.0332           | 92           | 12459          | 13542          | Fail         |
| 0.0341           | 70           | 11760          | 16800          | Fail         |
| 0.0351           | 52           | 11056          | 21261          | <u>Fail</u>  |
| 0.0360           | 39           | 10429          | 26741          | Fail         |
| 0.0369<br>0.0378 | 27<br>26     | 9841<br>9257   | 36448<br>35603 | Fail<br>Fail |
| 0.0376           | 22           | 8688           | 39490          | Fail         |
| 0.0396           | 19           | 8224           | 43284          | Fail         |
| 0.0405           | 18           | 7717           | 42872          | Fail         |
| 0.0414           | 16           | 7285           | 45531          | Fail         |
| 0.0423           | 14           | 6838           | 48842          | Fail         |
| 0.0432<br>0.0441 | 13<br>13     | 6444           | 49569<br>46838 | Fail         |
| 0.0441           | 13           | 6089<br>5784   | 44492          | Fail<br>Fail |
| 0.0459           | 13           | 5486           | 42200          | Fail         |
| 0.0468           | 13           | 5202           | 40015          | Fail         |
| 0.0477           | 11           | 4941           | 44918          | Fail         |
| 0.0486           | 9            | 4697           | 52188          | Fail         |
| 0.0495           | 9            | 4475           | 49722          | Fail         |
| 0.0504<br>0.0513 | 9<br>8       | 4235<br>4006   | 47055<br>50075 | Fail<br>Fail |
| 0.0522           | 8            | 3794           | 47425          | Fail         |
| 0.0531           | 8            | 3621           | 45262          | Fail         |
| 0.0540           | 6            | 3435           | 57250          | Fail         |
| 0.0549           | 6            | 3255           | 54250          | Fail         |
| 0.0558           | 5            | 3076           | 61520          | Fail         |
| 0.0567           | 5<br>5       | 2926<br>2800   | 58520<br>56000 | Fail<br>Fail |
| 0.0576<br>0.0585 | 5<br>4       | 2648           | 66200          | Fail         |
| 0.0594           | 4            | 2505           | 62625          | Fail         |
| 0.0603           | 4            | 2372           | 59300          | Fail         |
| 0.0612           | 4            | 2254           | 56350          | Fail         |
|                  |              |                |                |              |

| 0.0621<br>0.0630<br>0.0639<br>0.0648<br>0.0657<br>0.0667<br>0.0667<br>0.0685<br>0.0694<br>0.0703<br>0.0712<br>0.0721<br>0.0730<br>0.0739<br>0.0748<br>0.0757<br>0.0766<br>0.0775<br>0.0766<br>0.0775<br>0.0784<br>0.0793<br>0.0802<br>0.0811<br>0.0820<br>0.0829<br>0.0838<br>0.0847<br>0.0856<br>0.0874 | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 2150<br>2052<br>1945<br>1843<br>1755<br>1678<br>1607<br>1524<br>1450<br>1383<br>1329<br>1276<br>1217<br>1168<br>1115<br>1070<br>1016<br>982<br>941<br>909<br>872<br>835<br>795<br>771<br>742<br>709<br>675<br>644<br>618 | 53750<br>51300<br>48625<br>46075<br>43875<br>41950<br>40175<br>38100<br>36250<br>46100<br>44300<br>42533<br>40566<br>116800<br>111500<br>107000<br>101600<br>98200<br>94100<br>90900<br>87200<br>83500<br>79500<br>77100<br>74200<br>70900<br>67500<br>64400<br>61800 | Fail Fail Fail Fail Fail Fail Fail Fail |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 0.0865                                                                                                                                                                                                                                                                                                   | 1                                                                                                | 644                                                                                                                                                                                                                      | 64400                                                                                                                                                                                                                                                                 | Fail                                    |
| 0.0883                                                                                                                                                                                                                                                                                                   | 1                                                                                                | 591                                                                                                                                                                                                                      | 59100                                                                                                                                                                                                                                                                 | Fail                                    |
| 0.0892                                                                                                                                                                                                                                                                                                   | 1                                                                                                | 565                                                                                                                                                                                                                      | 56500                                                                                                                                                                                                                                                                 | Fail                                    |
| 0.0901                                                                                                                                                                                                                                                                                                   | 1                                                                                                | 543                                                                                                                                                                                                                      | 54300                                                                                                                                                                                                                                                                 | Fail                                    |
| 0.0910<br>0.0919                                                                                                                                                                                                                                                                                         | 1<br>1                                                                                           | 526<br>505                                                                                                                                                                                                               | 52600<br>50500                                                                                                                                                                                                                                                        | Fail<br>Fail                            |
| 0.0919                                                                                                                                                                                                                                                                                                   | 1                                                                                                | 488                                                                                                                                                                                                                      | 48800                                                                                                                                                                                                                                                                 | Fail                                    |
| 0.0937                                                                                                                                                                                                                                                                                                   | 1                                                                                                | 470                                                                                                                                                                                                                      | 47000                                                                                                                                                                                                                                                                 | Fail                                    |
| 0.0946                                                                                                                                                                                                                                                                                                   | 1                                                                                                | 447                                                                                                                                                                                                                      | 44700                                                                                                                                                                                                                                                                 | Fail                                    |
| 0.0955                                                                                                                                                                                                                                                                                                   | 1                                                                                                | 433                                                                                                                                                                                                                      | 43300                                                                                                                                                                                                                                                                 | Fail                                    |
| 0.0964                                                                                                                                                                                                                                                                                                   | 1                                                                                                | 414                                                                                                                                                                                                                      | 41400                                                                                                                                                                                                                                                                 | Fail                                    |
| 0.0974<br>0.0983                                                                                                                                                                                                                                                                                         | 1<br>1                                                                                           | 397<br>379                                                                                                                                                                                                               | 39700<br>37900                                                                                                                                                                                                                                                        | Fail<br>Fail                            |
| 0.0992                                                                                                                                                                                                                                                                                                   | 1                                                                                                | 368                                                                                                                                                                                                                      | 36800                                                                                                                                                                                                                                                                 | Fail                                    |
| 0.1001                                                                                                                                                                                                                                                                                                   | 1                                                                                                | 357                                                                                                                                                                                                                      | 35700                                                                                                                                                                                                                                                                 | Fail                                    |
| 0.1010                                                                                                                                                                                                                                                                                                   | 1                                                                                                | 340                                                                                                                                                                                                                      | 34000                                                                                                                                                                                                                                                                 | Fail                                    |
| 0.1019                                                                                                                                                                                                                                                                                                   | 1                                                                                                | 325                                                                                                                                                                                                                      | 32500                                                                                                                                                                                                                                                                 | Fail                                    |
| 0.1028                                                                                                                                                                                                                                                                                                   | 1                                                                                                | 316                                                                                                                                                                                                                      | 31600                                                                                                                                                                                                                                                                 | Fail                                    |


The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.


year flow.
The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

## Water Quality

Water Quality
Water Quality BMP Flow and Volume for POC #2
On-line facility volume: 0 acre-feet
On-line facility target flow: 0 cfs.
Adjusted for 15 min: 0 cfs.
Off-line facility target flow: 0 cfs.
Adjusted for 15 min: 0 cfs.

#### POC 3





+ Predeveloped

x Mitigated

Predeveloped Landuse Totals for POC #3

Total Pervious Area: 14.151
Total Impervious Area: 0

Mitigated Landuse Totals for POC #3 Total Pervious Area: 5.246 Total Impervious Area: 8.906

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #3

 Return Period
 Flow(cfs)

 2 year
 1.508833

 5 year
 2.537843

 10 year
 3.38824

 25 year
 4.672836

 50 year
 5.79389

 100 year
 7.06551

Flow Frequency Return Periods for Mitigated. POC #3

 Return Period
 Flow(cfs)

 2 year
 5.722185

 5 year
 7.659856

 10 year
 9.122997

 25 year
 11.187749

 50 year
 12.89087

 100 year
 14.742674

#### **Annual Peaks**

Annual Peaks for Predeveloped and Mitigated. POC #3

| Year | Predeveloped | Mitigated |
|------|--------------|-----------|
| 1949 | 3.022        | 9.094     |
| 1950 | 0.907        | 5.269     |
| 1951 | 2.144        | 7.080     |
| 1952 | 1.041        | 5.594     |
| 1953 | 1.252        | 4.554     |
| 1954 | 3.011        | 8.568     |
| 1955 | 2.848        | 8.979     |
| 1956 | 13.065       | 22.051    |
| 1957 | 2.308        | 7.257     |
| 1958 | 3.126        | 8.664     |
| 1959 | 2.700        | 6.491     |

| 1960<br>1961<br>1962<br>1963<br>1964<br>1965<br>1966<br>1967<br>1968<br>1969<br>1970<br>1971<br>1972<br>1973<br>1974<br>1975<br>1976<br>1977<br>1978<br>1979<br>1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1988<br>1989<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2004 | 1.603 3.917 1.132 1.470 1.242 0.636 3.249 2.230 2.149 1.553 1.596 2.686 2.196 1.320 1.714 1.812 2.334 1.077 1.866 1.507 1.143 0.825 0.737 1.721 0.634 0.493 1.492 1.272 1.068 0.574 0.677 1.314 1.485 0.852 2.027 1.673 2.071 1.517 1.742 2.726 0.883 0.426 4.121 2.423 0.784 | 4.209<br>9.160<br>4.226<br>5.961<br>4.619<br>3.064<br>9.639<br>6.599<br>5.570<br>6.539<br>7.000<br>6.279<br>4.373<br>5.643<br>6.523<br>3.917<br>5.445<br>5.415<br>5.416<br>7.423<br>3.771<br>5.433<br>4.877<br>5.4980<br>3.766<br>5.326<br>4.387<br>6.628<br>4.364<br>6.175<br>5.077<br>7.814<br>4.873<br>6.624<br>11.602<br>7.518<br>5.7518<br>6.624<br>11.602<br>7.518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6.7518<br>6. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2002<br>2003                                                                                                                                                                                                                                                                                                                                                                 | 4.121<br>2.423                                                                                                                                                                                                                                                                | 11.602<br>7.518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2003                                                                                                                                                                                                                                                                                                                                                                         | 0.037                                                                                                                                                                                                                                                                         | 4.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

## Ranked Annual Peaks

|                                                            | ranked mindair caks |              |           |        |
|------------------------------------------------------------|---------------------|--------------|-----------|--------|
| Ranked Annual Peaks for Predeveloped and Mitigated. POC #3 |                     |              |           | POC #3 |
|                                                            | Rank                | Predeveloped | Mitigated |        |
|                                                            | 1                   | 13.0652      | 22.0506   |        |
|                                                            | 2                   | 4.1215       | 11.6024   |        |
|                                                            | 3                   | 3.9166       | 9.6393    |        |
|                                                            | 4                   | 3.2494       | 9.1596    |        |

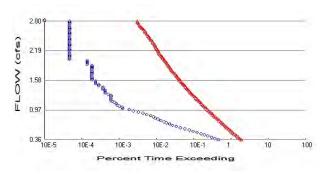
## **Duration Flows**

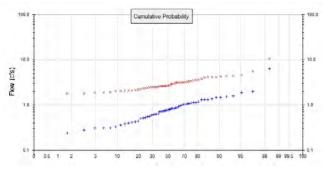
## The Duration Matching Failed

|                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Flow(cfs) 0.7544 0.8053 0.8562 0.9071 0.9580 1.0089 1.0598 1.1107 1.1616 1.2126 1.2635 1.3144 1.3653 1.4162 1.4671 1.5180 1.5689 1.6198 1.6707 1.725 1.8234 1.8743 1.9252 1.9761 2.0270 2.0779 2.1288 2.1797 2.2306 2.2815 2.3324 2.3833 2.4342 2.4851 2.5360 2.5870 2.6379 2.6888 2.7397 2.7906 2.8415 2.5360 2.5870 2.6879 2.6888 2.7397 2.7906 2.8415 2.9433 2.9942 3.0451 3.0960 3.1469 3.1978 3.2996 3.3505 3.4014 3.4523 | Predev 9619 7805 6376 5129 4156 33669 4156 32069 1625 949 727 479 397 480 149 120 180 141 131 131 131 131 131 131 131 131 131 | Mit<br>40061<br>36447<br>33195<br>30458<br>27934<br>25645<br>21560<br>19825<br>18320<br>16884<br>15631<br>14442<br>13325<br>12271<br>11308<br>10451<br>9582<br>8857<br>7516<br>6936<br>6402<br>5927<br>5493<br>5061<br>4684<br>4344<br>4032<br>3764<br>3497<br>3281<br>3046<br>2855<br>2428<br>2263<br>2096<br>1945<br>1823<br>1707<br>1607<br>1506<br>1400<br>1306<br>1230<br>1153<br>1046<br>1230<br>1153<br>1046<br>1230<br>1153<br>1046<br>1230<br>1153<br>1046<br>1230<br>1153<br>1046<br>1230<br>1153<br>1046<br>1230<br>1153<br>1046<br>1046<br>1046<br>1046<br>1046<br>1046<br>1046<br>1046 | Percentage 416 466 520 593 672 761 881 1042 1220 1471 1779 2161 2502 2781 3090 3287 3732 4043 4450 4542 5044 5979 6958 8467 10563 12976 17348 16707 18327 19810 19427 20506 21757 21961 20506 21757 21961 20506 21757 21961 20506 21757 21961 20506 21757 21961 20506 21757 21961 20506 21757 21961 20506 21757 21961 20506 21757 21961 20506 21757 21961 20506 21757 21961 20506 21757 21961 20506 21757 21961 20506 21757 21961 20506 21757 21961 20506 21757 21961 20506 21757 21961 20506 21757 21961 20506 21757 21961 20506 21757 21961 20506 21757 21961 20506 21757 21961 20506 21757 21961 20506 21757 21961 20506 21757 21961 20506 21757 21961 20506 21757 21961 20506 21757 21961 20506 21757 21961 20506 21757 21961 20506 21757 21961 | Pass/Fail Fail Fail Fail Fail Fail Fail Fail |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

year flow.
The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.


#### **Water Quality**


Water Quality BMP Flow and Volume for POC #3
On-line facility volume: 2.0814 acre-feet
On-line facility target flow: 2.3005 cfs.
Adjusted for 15 min: 2.3005 cfs. Off-line facility target flow: 1.3121 cfs.

Water Quality Treatment Facility #1 Adjusted for 15 min: 1.3121 cfs.

(West WQ Treatment Flow)

#### POC 4





+ Predeveloped

x Mitigated

Predeveloped Landuse Totals for POC #4

Total Pervious Area: 6.845 Total Impervious Area: 0

Mitigated Landuse Totals for POC #4
Total Pervious Area: 2.55
Total Impervious Area: 4.296

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #4

Return PeriodFlow(cfs)2 year0.729845 year1.22758310 year1.63893125 year2.26030450 year2.802571100 year3.417668

Flow Frequency Return Periods for Mitigated. POC #4

 Return Period
 Flow(cfs)

 2 year
 2.753086

 5 year
 3.686606

 10 year
 4.391699

 25 year
 5.386931

 50 year
 6.208018

 100 year
 7.10093

#### **Annual Peaks**

Annual Peaks for Predeveloped and Mitigated. POC #4

| Year | Predeveloped | Mitigated |
|------|--------------|-----------|
| 1949 | 1.462        | 4.388     |
| 1950 | 0.439        | 2.530     |
| 1951 | 1.037        | 3.414     |
| 1952 | 0.503        | 2.695     |
| 1953 | 0.606        | 2.194     |
| 1954 | 1.456        | 4.120     |
| 1955 | 1.378        | 4.328     |
| 1956 | 6.320        | 10.613    |
| 1957 | 1.116        | 3.492     |
| 1958 | 1.512        | 4.168     |
| 1959 | 1.306        | 3.125     |
|      |              |           |

# Ranked Annual Peaks

| rankoa / linto                                             | Named Allindari Calo |           |  |  |
|------------------------------------------------------------|----------------------|-----------|--|--|
| Ranked Annual Peaks for Predeveloped and Mitigated. POC #4 |                      |           |  |  |
| Rank                                                       | Predeveloped         | Mitigated |  |  |
| 1                                                          | 6.3198               | 10.6128   |  |  |
| 2                                                          | 1.9936               | 5.5812    |  |  |
| 3                                                          | 1.8945               | 4.6393    |  |  |
| 4                                                          | 1.5718               | 4.4127    |  |  |

# **Duration Flows**

The Duration Matching Failed

| 5 4.4.6.  | ······································ | anou  |            |              |
|-----------|----------------------------------------|-------|------------|--------------|
| Flow(cfs) | Predev                                 | Mit   | Percentage | Pass/Fail    |
| 0.3649    | 9668                                   | 40061 | 414        | Fail         |
| 0.3895    | 7828                                   | 36382 | 464        | Fail         |
| 0.4142    | 6380                                   | 33110 | 518        | Fail         |
| 0.4388    | 5159                                   | 30436 | 589        | Fail         |
| 0.4634    | 4179                                   | 27827 | 665        | Fail         |
| 0.4880    | 3360                                   | 25495 | 758        | Fail         |
| 0.5127    | 2669                                   | 23399 | 876        | Fail         |
| 0.5373    | 2067                                   | 21453 | 1037       | Fail         |
| 0.5619    | 1633                                   | 19780 | 1211       | Fail         |
| 0.5865    | 1249                                   | 18228 | 1459       | Fail         |
| 0.6111    | 948                                    | 16788 | 1770       | Fail         |
| 0.6358    | 725                                    | 15569 | 2147       | Fail         |
|           |                                        |       |            |              |
| 0.6604    | 578<br>470                             | 14369 | 2485       | Fail         |
| 0.6850    | 478                                    | 13229 | 2767       | Fail         |
| 0.7096    | 398                                    | 12224 | 3071       | Fail         |
| 0.7343    | 343                                    | 11199 | 3265       | Fail         |
| 0.7589    | 280                                    | 10386 | 3709       | Fail         |
| 0.7835    | 237                                    | 9512  | 4013       | Fail         |
| 0.8081    | 199                                    | 8774  | 4409       | Fail         |
| 0.8328    | 180                                    | 8104  | 4502       | Fail         |
| 0.8574    | 149                                    | 7456  | 5004       | Fail         |
| 0.8820    | 118                                    | 6872  | 5823       | <u>F</u> ail |
| 0.9066    | 93                                     | 6361  | 6839       | <u>F</u> ail |
| 0.9312    | 70                                     | 5884  | 8405       | Fail         |
| 0.9559    | 52                                     | 5448  | 10476      | Fail         |
| 0.9805    | 40                                     | 5014  | 12535      | Fail         |
| 1.0051    | 27                                     | 4631  | 17151      | Fail         |
| 1.0297    | 26                                     | 4301  | 16542      | Fail         |
| 1.0544    | 22                                     | 3989  | 18131      | Fail         |
| 1.0790    | 19                                     | 3732  | 19642      | Fail         |
| 1.1036    | 18                                     | 3467  | 19261      | Fail         |
| 1.1282    | 16                                     | 3240  | 20250      | Fail         |
| 1.1528    | 14                                     | 3022  | 21585      | Fail         |
| 1.1775    | 13                                     | 2819  | 21684      | Fail         |
| 1.2021    | 13                                     | 2599  | 19992      | Fail         |
| 1.2267    | 13                                     | 2402  | 18476      | Fail         |
| 1.2513    | 13                                     | 2229  | 17146      | Fail         |
| 1.2760    | 13                                     | 2060  | 15846      | Fail         |
| 1.3006    | 11                                     | 1920  | 17454      | Fail         |
| 1.3252    | 9                                      | 1794  | 19933      | Fail         |
| 1.3498    | 9                                      | 1685  | 18722      | Fail         |
| 1.3745    | 9                                      | 1589  | 17655      | Fail         |
| 1.3991    | 8                                      | 1484  | 18550      | Fail         |
| 1.4237    | 8                                      | 1377  | 17212      | Fail         |
| 1.4483    | 8                                      | 1288  | 16100      | Fail         |
| 1.4729    | 6                                      | 1211  | 20183      | Fail         |
| 1.4976    | 6                                      | 1141  | 19016      | Fail         |
| 1.5222    | 5                                      | 1070  | 21400      | Fail         |
| 1.5468    | 5                                      | 1005  | 20100      | Fail         |
| 1.5714    | 5                                      | 954   | 19080      | Fail         |
| 1.5961    | 4                                      | 894   | 22350      | Fail         |
| 1.6207    | 4                                      | 840   | 21000      | Fail         |
| 1.6453    | 4                                      | 798   | 19950      | Fail         |
| 1.6699    | 4                                      | 755   | 18875      | Fail         |
|           | •                                      |       |            |              |

| 1.6945<br>1.7192<br>1.7438<br>1.7684<br>1.7930<br>1.8177<br>1.8423<br>1.8669<br>1.8915<br>1.9162<br>1.9408<br>1.9900<br>2.0146<br>2.0393<br>2.0639<br>2.0885<br>2.1131<br>2.1378<br>2.1624<br>2.1870<br>2.2116<br>2.2362<br>2.2609<br>2.2855<br>2.3101<br>2.3347<br>2.3594<br>2.4332<br>2.4579<br>2.4825<br>2.5071<br>2.5563<br>2.6302<br>2.6548<br>2.6795<br>2.7533<br>2.7730 | 444444433331111111111111111111111111111 | 712<br>672<br>619<br>579<br>546<br>519<br>476<br>446<br>424<br>403<br>381<br>316<br>304<br>289<br>219<br>210<br>200<br>194<br>188<br>174<br>168<br>155<br>126<br>119<br>115<br>103<br>95<br>88<br>75<br>71 | 17800<br>16800<br>15475<br>14475<br>13650<br>12975<br>12475<br>11900<br>11150<br>14133<br>13433<br>12700<br>12033<br>34100<br>31600<br>28900<br>25500<br>24700<br>23900<br>22800<br>21900<br>21900<br>21900<br>21000<br>19400<br>15500<br>17400<br>16800<br>17400<br>15500<br>15000<br>11900<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500 | Fail<br>Fail<br>Fail<br>Fail<br>Fail<br>Fail<br>Fail<br>Fail |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                | 1 1 1                                   |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

year flow.
The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

#### **Water Quality**

Water Quality BMP Flow and Volume for POC #4
On-line facility volume: 1.0052 acre-feet
On-line facility target flow: 1.1083 cfs.
Adjusted for 15 min: 1.1083 cfs. Off-line facility target flow: 0.6316 cfs.

Water Quality Treatment Facility #2 Adjusted for 15 min: 0.6316 cfs.

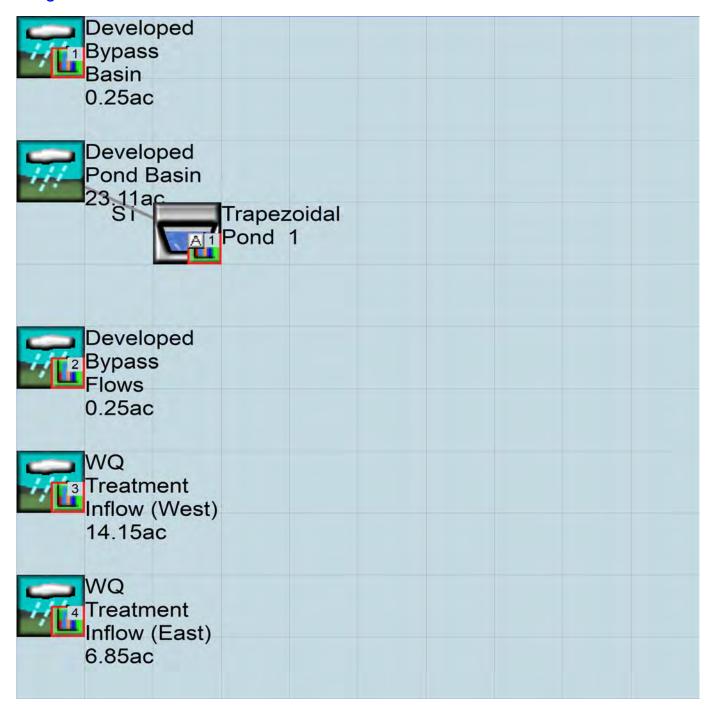
(East WQ Treatment Flow)

# Model Default Modifications

Total of 0 changes have been made.

# PERLND Changes

No PERLND changes have been made.


# **IMPLND Changes**

No IMPLND changes have been made.

# Appendix Predeveloped Schematic



# Mitigated Schematic



#### Predeveloped UCI File

RUN

```
GLOBAL
 WWHM4 model simulation
                            END
            1948 10 01
                                  2009 09 30
 START
 RUN INTERP OUTPUT LEVEL
                           3 0
 RESUME
            0 RUN
                  1
                                        UNIT SYSTEM
END GLOBAL
FILES
<File>
      <Un#>
              <---->***
<-ID->
          26
WDM
              2025-11-10 - Pond.wdm
MESSU
          25
              Pre2025-11-10 - Pond.MES
              Pre2025-11-10 - Pond.L61
          27
          28
              Pre2025-11-10 - Pond.L62
              POC2025-11-10 - Pond1.dat
          30
              POC2025-11-10 - Pond2.dat
          31
          32
              POC2025-11-10 - Pond3.dat
              POC2025-11-10 - Pond4.dat
END FILES
OPN SEQUENCE
                     INDELT 00:15
   INGRP
     PERLND
                12
               501
     COPY
               502
     COPY
               503
     COPY
     COPY
               504
     DISPLY
     DISPLY
                 3
     DISPLY
     DISPLY
   END INGRP
END OPN SEQUENCE
DISPLY
 DISPLY-INFO1
   # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
           Pre-Developed Pond Basin
                                      MAX
                                                            1
                                                                          9
            Pre-Developed Bypass Flow
                                      MAX
                                                                    31
            Predev WQ Treatment Inflo
                                                                2
                                                                    32
                                                                          9
                                      MAX
                                                            1
            Predev WQ Treatment Inflo
                                      MAX
                                                            1
                                                                    33
                                                                          9
   4
 END DISPLY-INFO1
END DISPLY
COPY
 TIMESERIES
   # - # NPT
               NMN ***
   1
           1
                1
                 1
  502
                 1
             1
 503
             1
                 1
 504
             1
                 1
 END TIMESERIES
END COPY
GENER
 OPCODE
  # # OPCD ***
 END OPCODE
 PARM
                K ***
   #
 END PARM
END GENER
PERLND
  GEN-INFO
   <PLS ><----Name---->NBLKS Unit-systems Printer ***
                                 User t-series Engl Metr ***
                                        in out
         C, Forest, Steep
                               1
                                         1
                                              1
```

```
END GEN-INFO
 *** Section PWATER***
 ACTIVITY
   <PLS > ******** Active Sections *********************
  # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
12 0 0 1 0 0 0 0 0 0 0 0
 END ACTIVITY
 PRINT-INFO
  PWAT-PARM1
  <PLS > PWATER variable monthly parameter value flags ***
  END PWAT-PARM1
 PWAT-PARM2
  <PLS > PWATER input info: Part 2
                                  LSUR SLSUR
400 0.15
  # - # ***FOREST LZSN INFILT
                                                  KVARY AGWRC
  12 0
                          0.08
                                                  0.5
                                                          0.996
 END PWAT-PARM2
 PWAT-PARM3
           PWATER input info: Part 3
  <PLS >
   # - # ***PETMAX PETMIN INFEXP
2 0 0 2
                                  INFILD DEEPFR
                                                  BASETP
                                                          AGWETP
                                  2
                                          0
                                                  0
 END PWAT-PARM3
 PWAT-PARM4
                                                        * * *
  <PLS >
          PWATER input info: Part 4
                                  INTFW IRC LZETP ***
6 0.3 0.7
  # - # CEPSC UZSN NSUR
.2 0.2 0.3 0.35
                   0.3
                           0.35
  12
 END PWAT-PARM4
 PWAT-STATE1
   <PLS > *** Initial conditions at start of simulation
         ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
      # *** CEPS SURS UZS IFWS LZS 0 0 0 0 2.5
                                                            GWVS
 END PWAT-STATE1
END PERLND
IMPLND
 GEN-INFO
  <PLS ><----- Name----> Unit-systems Printer ***
  # - #
                       User t-series Engl Metr ***
                             in out
 END GEN-INFO
 *** Section IWATER***
 ACTIVITY
   <PLS > ******** Active Sections **********************
  # - # ATMP SNOW IWAT SLD IWG IQAL ***
 END ACTIVITY
 PRINT-INFO
   <ILS > ****** Print-flags ****** PIVL PYR
  # - # ATMP SNOW IWAT SLD IWG IQAL *******
 END PRINT-INFO
 IWAT-PARM1
   <PLS > IWATER variable monthly parameter value flags ***
   # - # CSNO RTOP VRS VNN RTLI ***
```

END IWAT-PARM1

```
IWAT-PARM2
    <PLS > IWATER input info: Part 2 * # - # *** LSUR SLSUR NSUR RETSC
  END IWAT-PARM2
  IWAT-PARM3
                  IWATER input info: Part 3
     <PLS >
    # - # ***PETMAX PETMIN
  END IWAT-PARM3
   IWAT-STATE1
    <PLS > *** Initial conditions at start of simulation
     # - # *** RETS SURS
  END IWAT-STATE1
END IMPLND
SCHEMATIC
                                   <--Area--> <-Target-> MBLK *** <-factor-> <Name> # Tbl# ***
<-Source->
Pre-Developed Pond Basin***
                                        20.604 COPY 501 12
20.604 COPY 501 13
PERLND 12
PERLND 12
Pre-Developed Bypass Basin***
                                         0.251 COPY 501 12
0.251 COPY 501 13
PERLND 12
PERLND 12
Pre-Developed Bypass Flows***
                                         0.251 COPY 502
0.251 COPY 502
PERLND 12
PERLND 12
                                                                         13
Predev WQ Treatment Inflow (West) ***
                                                    COPY 503 12
COPY 503 13
PERLND 12
                                        14.151
PERLND 12
                                        14.151
Predev WQ Treatment Inflow (East)***
                                         6.845 COPY 504 12
6.845 COPY 504 13
PERLND 12
PERLND 12
*****Routing****
END SCHEMATIC
NETWORK
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***

      Name>
      #
      <Name>
      #
      <Name>
      #
      <Name>
      #
      <Name>
      #
      <Name>
      #
      <Name>
      #
      Copy
      501 OUTPUT MEAN
      1
      1
      48.4
      DISPLY
      1
      INPUT TIMSER
      1

      COPY
      502 OUTPUT MEAN
      1
      1
      48.4
      DISPLY
      2
      INPUT TIMSER
      1

      COPY
      503 OUTPUT MEAN
      1
      1
      48.4
      DISPLY
      3
      INPUT TIMSER
      1

      COPY
      504 OUTPUT MEAN
      1
      1
      48.4
      DISPLY
      4
      INPUT TIMSER
      1

                                                                                  <Name> # # ***
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
END NETWORK
RCHRES
  GEN-INFO
    RCHRES Name Nexits Unit Systems Printer
                                                                                                 * * *
    # - #<----- User T-series Engl Metr LKFG
                                                                                                 * * *
                                                      in out
  END GEN-INFO
   *** Section RCHRES***
  ACTIVITY
     <PLS > ******** Active Sections *********************
     # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG ***
  END ACTIVITY
  PRINT-INFO
     <PLS > ******* Print-flags ******** PIVL PYR
     # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR ********
  END PRINT-INFO
```

```
HYDR-PARM1
    RCHRES Flags for each HYDR Section
    END HYDR-PARM1
  HYDR-PARM2
  # - # FTABNO LEN DELTH STCOR
                                                          KS DB50
                                                                               * * *
  <----><----><---->
                                                                               * * *
  END HYDR-PARM2
  HYDR-INIT
   RCHRES Initial conditions for each HYDR section
    # - # *** VOL Initial value of COLIND Initial value of OUTDGT *** ac-ft for each possible exit for each possible exit
  *** ac-ft for each possible exit for each possible exit
  END HYDR-INIT
END RCHRES
SPEC-ACTIONS
END SPEC-ACTIONS
FTABLES
END FTABLES
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<Name> # # ***
END EXT SOURCES
EXT TARGETS
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd ***
COPY 501 OUTPUT MEAN 1 1 48.4 WDM 501 FLOW ENGL COPY 503 OUTPUT MEAN 1 1 48.4 WDM 503 FLOW ENGL COPY 504 OUTPUT MEAN 1 1 48.4 WDM 503 FLOW ENGL COPY 504 OUTPUT MEAN 1 1 48.4 WDM 504 FLOW ENGL
                                                                ENGL
ENGL
                                                                           REPL
                                                                           REPL
                                                                          REPL
                                                                          REPL
END EXT TARGETS
MASS-LINK

<pre
PERLND PWATER SURO
                             0.083333
                                                           INPUT MEAN
                                            COPY
 END MASS-LINK 12
  MASS-LINK 13
PERLND PWATER IFWO 0.083333 COPY
                                                          INPUT MEAN
  END MASS-LINK 13
END MASS-LINK
```

END RUN

#### Mitigated UCI File

RUN

END GENER

```
GLOBAL
 WWHM4 model simulation
                            END
 START
       1948 10 01
                                  2009 09 30
 RUN INTERP OUTPUT LEVEL
                          3 0
 RESUME
           0 RUN 1
                                        UNIT SYSTEM
END GLOBAL
FILES
<File> <Un#>
              <---->***
<-ID->
WDM
          26
              2025-11-10 - Pond.wdm
MESSU
          25
              Mit2025-11-10 - Pond.MES
          27
              Mit2025-11-10 - Pond.L61
          28
              Mit2025-11-10 - Pond.L62
              POC2025-11-10 - Pond2.dat
          31
              POC2025-11-10 - Pond3.dat
          32
          33
              POC2025-11-10 - Pond4.dat
              POC2025-11-10 - Pond1.dat
END FILES
OPN SEQUENCE
                     INDELT 00:15
   INGRP
     PERLND
                14
                2
     IMPLND
                4
     IMPLND
                1
     RCHRES
     COPY
               502
     COPY
               503
               504
     COPY
     COPY
                1
     COPY
               501
               601
     COPY
     DISPLY
     DISPLY
                 3
     DISPLY
     DISPLY
   END INGRP
END OPN SEQUENCE
DISPLY
 DISPLY-INFO1
   # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
          Developed Bypass Flows
                                      MAX
                                                                    31
                                                            1
            WQ Treatment Inflow (West
                                                                2
                                                                          9
                                      MAX
                                                            1
                                                                    32
            WQ Treatment Inflow (East
                                                                          9
                                      MAX
                                                            1
                                                                    33
            Trapezoidal Pond 1
   1
                                      MAX
                                                            1
                                                                    30
                                                                          9
 END DISPLY-INFO1
END DISPLY
COPY
 TIMESERIES
               NMN ***
   # - # NPT
   1
          1
                1
 502
             1
                 1
 503
             1
                 1
 504
             1
                 1
 501
             1
                 1
 601
 END TIMESERIES
END COPY
GENER
 OPCODE
   # # OPCD ***
 END OPCODE
 PARM
                K ***
   #
 END PARM
```

```
PERLND
 GEN-INFO
  <PLS ><----Name---->NBLKS Unit-systems Printer ***
                         User t-series Engl Metr ***
                                   in out
  14 C, Pasture, Mod
                            1
                                1
                                  1 1
 END GEN-INFO
 *** Section PWATER***
 ACTIVITY
  # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
14 0 0 1 0 0 0 0 0 0 0 0
 END ACTIVITY
 PRINT-INFO
  <PLS > *********** Print-flags ************************* PIVL PYR
  END PRINT-INFO
 PWAT-PARM1
  <PLS > PWATER variable monthly parameter value flags ***
  # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***
14 0 0 0 0 0 0 0 0 0 0 0
 END PWAT-PARM1
 PWAT-PARM2
            PWATER input info: Part 2
  <PLS >
                                     LSUR SLSUR
400 0.1
   # - # ***FOREST LZSN INFILT
                                                     KVARY
                                                              AGWRC
      0
                           0.06
                     4.5
                                                      0.5
                                                              0.996
 END PWAT-PARM2
 PWAT-PARM3
  WAT-PARM3

<PLS > PWATER input info: Part 3 ***
  # - # ***PETMAX PETMIN INFEXP INFILD DEEPFR 14 0 0 2 2 0
                                                     BASETP
                                                              AGWETP
                                            0
                                                     0
 END PWAT-PARM3
 PWAT-PARM4
            PWATER input info: Part 4
  <PLS >
            CEPSC UZSN NSUR
                                     INTFW
                                              IRC
                                                      LZETP ***
  14 0.15
                     0.4
                             0.3
                                     6
                                              0.5
                                                     0.4
 END PWAT-PARM4
 PWAT-STATE1
  <PLS > *** Initial conditions at start of simulation
          ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
       # *** CEPS SURS UZS IFWS LZS AGWS
                                                               GWVS
  14
                       Ω
                               Ω
                                        Ω
                                                2.5
 END PWAT-STATE1
END PERLND
IMPLND
 GEN-INFO
   <PLS ><----Name----> Unit-systems Printer ***
                         User t-series Engl Metr ***
                      in out ***
1 1 1 27 0
1 1 1 27 0
         ROADS/MOD
        ROOF TOPS/FLAT
 END GEN-INFO
 *** Section IWATER***
 ACTIVITY
   <PLS > ******** Active Sections *********************
   # - # ATMP SNOW IWAT SLD IWG IQAL
2 0 0 1 0 0 0
4 0 0 1 0 0
                                   * * *
 END ACTIVITY
```

```
PRINT-INFO
    <ILS > ******* Print-flags ******* PIVL PYR
    # - # ATMP SNOW IWAT SLD IWG IQAL *******
    2 0 0 4 0 0 4 1 9
4 0 0 4 0 0 0 1 9
  END PRINT-INFO
  IWAT-PARM1
    <PLS > IWATER variable monthly parameter value flags ***
    # - # CSNO RTOP VRS VNN RTLI
2 0 0 0 0 0 0
4 0 0 0 0
    2 0 0 4
  END IWAT-PARM1
  IWAT-PARM2
              IWATER input info: Part 2 *
LSUR SLSUR NSUR RETSC
400 0.05 0.1 0.08
   <PLS >
    2
                 400
                        0.01
                                    0.1
                                             0.1
  END IWAT-PARM2
  IWAT-PARM3
   <PLS > IWATER input info: Part 3
                                                 * * *
    # - # ***PETMAX PETMIN
           0
                       0
                            0
                   0
   4
  END IWAT-PARM3
  IWAT-STATE1
   <PLS > *** Initial conditions at start of simulation
    # - # *** RETS SURS
               0
                          0
                   0
                             0
  END IWAT-STATE1
END IMPLND
SCHEMATIC
                           <--Area--> <-Target-> MBLK
<-factor-> <Name> # Tbl#
<-Source->
                                                              * * *
<Name> #
Developed Pond Basin ***
PERLND 14
                                 9.527
                                          RCHRES 1
PERLND 14
                                 9.527
                                          RCHRES 1
                                                           3
                                                           5
IMPLND 2
                                 5.145
                                          RCHRES 1
IMPLND 4
                                 8.439
                                                          5
                                          RCHRES 1
Developed Bypass Basin***
                                                501
601
501
                                                       1<sub>2</sub>
13
1?
PERLND 14
PERLND 14
                                 0.045
                                          COPY
                                 0.045
                                          COPY
PERLND 14
                                 0.045
                                          COPY
PERLND 14
                                                601
                                 0.045
                                          COPY
                                 0.206
                                          COPY
                                                  501
                                                         15
IMPLND 2
IMPLND 2
                                 0.206
                                           COPY
                                                601
Developed Bypass Flows ***
                                                 502 12
502 13
                                 0.045
                                          COPY
PERLND 14
PERLND 14
                                 0.045
                                          COPY
IMPLND 2
                                 0.206
                                          COPY
                                                 502
                                                         15
WQ Treatment Inflow (West) ***
                                                      12
13
15
                                 5.246
                                                  503
PERLND 14
                                          COPY
PERLND 14
                                                  503
                                 5.246
                                          COPY
IMPLND
       2
                                 3.268
                                          COPY
                                                  503
IMPLND
                                 5.638
                                          COPY
                                                503
                                                         15
WQ Treatment Inflow (East) ***
                                                      12
13
                                  2.55
                                                  504
PERLND 14
                                          COPY
                                  2.55
PERLND 14
                                                  504
                                          COPY
IMPLND 2
                                 1.495
                                          COPY
                                                  504
                                                         15
IMPLND
       4
                                 2.801
                                           COPY
                                                 504
                                                          15
*****Routing*****
PERLND 14
                                 9.527
                                          COPY
                                                  1
                                                          12
IMPLND 2
                                 5.145
                                          COPY
                                                   1
                                                          15
```

```
8.439 COPY 1 15
9.527 COPY 1 13
1 COPY 501 16
IMPLND 4
PERLND 14
RCHRES 1
END SCHEMATIC
NETWORK
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
END NETWORK
RCHRES
 GEN-INFO
  RCHRES Name Nexits Unit Systems Printer
   # - #<----- User T-series Engl Metr LKFG
                                                               * * *
                                  in out
  1 Trapezoidal Pond-009 1 1 1 1 28 0 1
 END GEN-INFO
  *** Section RCHRES***
 ACTIVITY
   END ACTIVITY
 PRINT-INFO
   <PLS > ******** Print-flags ********* PIVL PYR
   # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR 1 4 0 0 0 0 0 0 0 0 0 0 1 9
 END PRINT-INFO
 HYDR-PARM1
   RCHRES Flags for each HYDR Section
   # - # VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each FG FG FG possible exit *** possible exit possible exit

1 0 1 0 0 4 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2
 END HYDR-PARM1
 HYDR-PARM2
  # - # FTABNO LEN DELTH STCOR KS DB50
  <----><----><---->
  1 0.04 0.0 0.0 0.5 0.0
 END HYDR-PARM2
 HYDR-INIT
   RCHRES Initial conditions for each HYDR section

# - # *** VOL Initial value of COLIND Initial value of OUTDGT

*** ac-ft for each possible exit for each possible exit
                  4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  <---->
  1 0
 END HYDR-INIT
END RCHRES
SPEC-ACTIONS
END SPEC-ACTIONS
FTABLES
 FTABLE
  91 4
    Depth Area Volume Outflow1 Velocity Travel Time***
(ft) (acres) (acre-ft) (cfs) (ft/sec) (Minutes)***
  0.000000 0.486685 0.000000 0.000000
```

| $\begin{array}{c} 1.24\\ 0.36\\ 3.48\\ 6.73\\ 5.78\\ 5.79\\ 1.22\\ 4.46\\ 6.81\\ 3.13\\ 3.4\\ 4.22\\ 2.32\\ 2.33\\ 3.33\\ 3.4\\ 4.42\\ 4.80\\ 1.35\\ 5.55\\ 5.66\\ 6.66\\ 6.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} 44668113368\\ 4467913367002244668113357700224466811335770022446681133577002244668113357700224466811335770022446681133577002244668113357700224466811335770022446681133577002244668113357700224466811335770022446681133577002244668113357700224466811335770022446681133577002244668113357700224466811335770022446681133577002244668113357700224466811335770022446791136811336811335770022446791136811336811335770022446791136811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811336811368113368113368113368113368113368113368113368113368113368113368113368113368113368113368113368113681136811368113681136811368113681136811368113681136811368113681113681113681113681113681113681113681113681113681113681113681113681113681113681113681113681113681111$                                                                                                                                                                                                                                                                                                                                                    |
| 0.490192<br>0.497239<br>0.5007890<br>0.5014331<br>0.507893<br>0.515050<br>0.515050<br>0.518645<br>0.522251<br>0.522251<br>0.522451<br>0.522451<br>0.522451<br>0.522451<br>0.522451<br>0.522451<br>0.522451<br>0.536784<br>0.540445<br>0.547799<br>0.5551498<br>0.5555198<br>0.5555198<br>0.573886<br>0.573886<br>0.573886<br>0.573886<br>0.573886<br>0.573886<br>0.573886<br>0.573886<br>0.574388<br>0.585230<br>0.585230<br>0.585230<br>0.604358<br>0.604358<br>0.612085<br>0.612085<br>0.612985<br>0.627672<br>0.633532<br>0.633532<br>0.633532<br>0.633532<br>0.647403<br>0.655372<br>0.655373<br>0.6674482<br>0.675487<br>0.675487<br>0.675487<br>0.675487<br>0.675487<br>0.675487<br>0.675487<br>0.675487<br>0.675487<br>0.675487<br>0.675487<br>0.675487<br>0.675487<br>0.675487<br>0.675487<br>0.675487<br>0.675487<br>0.675487<br>0.77544697<br>0.77544590<br>0.77544590<br>0.77544697<br>0.77544697<br>0.77544697<br>0.77544697<br>0.77544697<br>0.77544697<br>0.77544697<br>0.77544697<br>0.7754425<br>0.7758689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.059698 0.119825 0.180383 0.2413747 0.3646555 0.426949 0.489681 0.552851 0.616461 0.680513 0.745007 0.809946 0.875330 0.941160 1.007439 1.074167 1.141346 1.208977 1.2477062 1.345601 1.444597 1.444597 1.484050 1.553962 1.624334 1.695167 1.766464 1.838250 1.983143 2.056305 2.129935 2.204037 2.278611 2.353659 2.429181 2.505180 2.581656 2.658612 2.736047 2.813964 2.892365 2.129935 2.204037 2.278611 2.353659 2.429181 2.505180 2.581656 2.658612 2.736047 2.813964 2.892365 2.129935 2.204037 2.278611 2.353659 2.429181 2.505180 2.5658612 2.736047 2.813964 2.892365 2.129935 2.204037 2.278611 2.353659 2.429181 2.505180 2.581656 2.658612 2.736047 2.813964 2.892365 2.9103260 5.104688 5.289104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.124667 0.1763929 0.2459333 0.27876929 0.2499333 0.305369 0.329837 0.352610 0.374000 0.394230 0.413472 0.431857 0.449492 0.466459 0.482831 0.498666 0.514013 0.528915 0.543409 0.557526 0.571294 0.584738 0.597880 0.610739 0.623333 0.635677 0.647786 0.659671 0.671350 0.682827 0.705220 0.716155 0.726924 0.737537 0.747999 0.758317 0.768496 0.778542 0.788460 0.798255 0.807931 0.817493 0.768496 0.778542 0.788460 0.798255 0.807931 0.817493 0.826944 0.836288 0.845529 0.856660 0.798255 0.807931 0.817493 0.768496 0.778542 0.788460 0.798255 0.807931 0.817493 0.8263660 0.798255 0.807931 0.817493 0.768496 0.778542 0.788460 0.798255 0.807931 0.817493 0.8263660 0.85532360 0.85532360 0.85532360 0.85532360 0.85532360 0.85532360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

```
0.762964
  8.677778
                      5.382094
                                 1.676637
            0.767251
  8.800000
                       5.475607
                                 1.758872
  8.922222
            0.771548
                       5.569644
                                 1.823086
            0.775856
  9.044444
                       5.664208
                                 1.879072
                                 1.929985
  9.166667
            0.780175
                      5.759299
  9.288889
            0.784506
                      5.854918
                                1.977329
  9.411111
            0.788847
                       5.951068
                                 2.021962
                                 2.064434
  9.533333
            0.793199
                      6.047748
  9.655556
            0.797562
                       6.144961
                                 2.105119
  9.777778
            0.801936
                       6.242708
                                 2.144291
  9.900000
            0.806321
                       6.340991
                                 2.182154
            0.810717
                       6.439810
  10.02222
                                 2.271604
  10.14444
            0.815124
                       6.539167
                                 3.123549
  10.26667
            0.819542
                       6.639063
                                 4.413153
  10.38889
            0.823971
                       6.739500
                                 5.833189
                                 7.093837
  10.51111
            0.828411
                       6.840479
  10.63333
            0.832862
                       6.942001
                                 7.981259
  10.75556
            0.837324
                       7.044068
                                 8.580674
  10.87778
            0.841797
                       7.146681
                                 9.091464
  11.00000
            0.846281
                       7.249842
                                 9.569314
  END FTABLE 1
END FTABLES
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member->
<Name>
         # <Name> # tem strg<-factor->strg <Name> # #
                                                                    <Name> # #
M \cap M
         2 PREC
                    ENGL
                             0.8
                                             PERLND
                                                      1 999 EXTNL
                                                                    PREC
                                                      1 999 EXTNL
WDM
         2 PREC
                     ENGL
                             0.8
                                             IMPLND
                                                                    PREC
MDM
         1 EVAP
                    ENGL
                             0.76
                                             PERLND
                                                      1 999 EXTNL
                                                                    PETINP
                             0.76
                                                      1 999 EXTNL
MDM
         1 EVAP
                    ENGL
                                             IMPLND
                                                                    PETINP
END EXT SOURCES
EXT TARGETS
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd ***
                   <Name> # #<-factor->strg <Name> # <Name>
                                                                  tem strg strg***
<Name>
                                                    701 FLOW
COPY
         1 OUTPUT MEAN
                          1 1
                                  48.4
                                             WDM
                                                                  ENGL
                                                                            REPL
COPY
       501 OUTPUT MEAN
                          1 1
                                  48.4
                                             WDM
                                                    801 FLOW
                                                                 ENGL
                                                                            REPL
COPY
       601 OUTPUT MEAN
                          1 1
                                  48.4
                                             WDM
                                                    901 FLOW
                                                                 ENGL
                                                                            REPL
                          1 1
                                                   1000 FLOW
RCHRES
         1 HYDR
                  RO
                                     1
                                             WDM
                                                                 ENGL
                                                                            REPL
                  STAGE
                                                   1001 STAG
RCHRES
         1 HYDR
                          1 1
                                     1
                                             WDM
                                                                 ENGL
                                                                            REPL
COPY
         2 OUTPUT MEAN
                          1 1
                                  48.4
                                             WDM
                                                    702 FLOW
                                                                 ENGL
                                                                            REPL
COPY
       502 OUTPUT MEAN
                                  48.4
                                             WDM
                                                    802 FLOW
                                                                 ENGL
       602 OUTPUT MEAN
                                  48.4
                                                    902 FLOW
COPY
                          1 1
                                             WDM
                                                                 ENGL
                                                                            REPL
         3 OUTPUT MEAN
                                  48.4
                                                    703 FLOW
COPY
                          1 1
                                             WDM
                                                                 ENGL
                                                                            REPL
COPY
       503 OUTPUT MEAN
                          1 1
                                  48.4
                                             WDM
                                                    803 FLOW
                                                                 ENGL
                                                                            REPL
       603 OUTPUT MEAN
                                  48.4
                                                    903 FLOW
COPY
                          1 1
                                             WDM
                                                                  ENGL
                                                                            REPL
COPY
         4 OUTPUT MEAN
                          1 1
                                  48.4
                                             WDM
                                                    704 FLOW
                                                                  ENGL
                                                                            REPL
                          1 1
                                                    804 FLOW
       504 OUTPUT MEAN
                                  48.4
COPY
                                             WDM
                                                                  ENGL
                                                                            REPL
                                                                 ENGL
       604 OUTPUT MEAN
                          1 1
                                                    904 FLOW
COPY
                                  48.4
                                             MDM
                                                                            REPL
END EXT TARGETS
MASS-LINK
           <-Grp> <-Member-><--Mult-->
                                                             <-Grp> <-Member->***
<Volume>
                                             <Target>
                   <Name> # #<-factor->
                                                                    <Name> # #***
<Name>
                                             <Name>
  MASS-LINK
                    2.
           PWATER SURO
                              0.083333
                                             RCHRES
                                                             INFLOW IVOL
PERLND
  END MASS-LINK
                    2
  MASS-LINK
                    3
                              0.083333
PERLND
          PWATER IFWO
                                             RCHRES
                                                             INFLOW IVOL
  END MASS-LINK
                    5
  MASS-LINK
IMPLND
       IWATER SURO
                              0.083333
                                             RCHRES
                                                             INFLOW IVOL
  END MASS-LINK
                   5
                  12
  MASS-LINK
PERLND PWATER SURO
                              0.083333
                                             COPY
                                                             INPUT
                                                                    MEAN
  END MASS-LINK
                  12
```

| MASS-LINE | 7      | 13   |          |      |       |      |
|-----------|--------|------|----------|------|-------|------|
| PERLND    | PWATER | IFWO | 0.083333 | COPY | INPUT | MEAN |
| END MASS- | -LINK  | 13   |          |      |       |      |
| MASS-LINE | (      | 15   |          |      |       |      |
| IMPLND    | IWATER | SURO | 0.083333 | COPY | INPUT | MEAN |
| END MASS- | -LINK  | 15   |          |      |       |      |
| MASS-LINK | (      | 16   |          |      |       |      |
| RCHRES    | ROFLOW |      |          | COPY | INPUT | MEAN |
| END MASS- | -LINK  | 16   |          |      |       |      |

END MASS-LINK

END RUN

# Predeveloped HSPF Message File

# Mitigated HSPF Message File

# Disclaimer

#### Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2025; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

# WWHM2012 PROJECT REPORT DETENTION VAULT (EAST BASIN)

# General Model Information

WWHM2012 Project Name: 2025-11-11- Vault

Site Name: Pinnacle at Liberty Bay

Site Address:

City: Poulsbo
Report Date: 11/12/2025
Gage: Quilcene
Data Start: 1948/10/01
Data End: 2009/09/30
Timestep: 15 Minute

Precip Scale: 0.800

Version Date: 2024/06/28 Version: 4.3.1

#### **POC Thresholds**

Low Flow Threshold for POC1: 50 Percent of the 2 Year

High Flow Threshold for POC1: 50 Year

2025-11-11- Vault 11/12/2025 3:26:39 PM Page 2

# Landuse Basin Data Predeveloped Land Use

#### **Pre-Developed Basin**

Bypass: No

GroundWater: No

Pervious Land Use acre C, Forest, Flat 4.721

Pervious Total 4.721

Impervious Land Use acre

Impervious Total 0

Basin Total 4.721

Element Flow Componants: Surface Interflow

Componant Flows To:

POC 1 POC 1

Groundwater

2025-11-11- Vault 11/12/2025 3:26:39 PM Page 3

#### Mitigated Land Use

#### **Developed Vault Basin**

Bypass: No

GroundWater: No

Pervious Land Use acre C, Pasture, Mod 0.689

Pervious Total 0.689

Impervious Land Use acre ROADS MOD 0.791 ROOF TOPS FLAT 0.548

Impervious Total 1.339

Basin Total 2.028

Element Flow Componants: Surface Interflow

Componant Flows To:

Vault 1 Vault 1

Groundwater

# Routing Elements Predeveloped Routing

2025-11-11- Vault 11/12/2025 3:26:39 PM Page 5

#### Mitigated Routing

#### Vault 1

 Width:
 26 ft.

 Length:
 50 ft.

 Depth:
 6 ft.

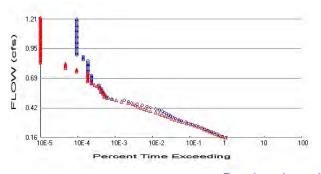
Discharge Structure

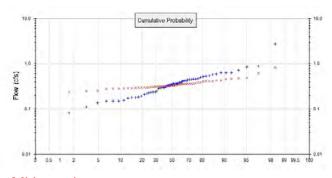
Riser Height: 5 ft. Riser Diameter: 12 in.

Orifice 1 Diameter: 2.625 in. Elevation:0 ft. Orifice 2 Diameter: 1.188 in. Elevation:1.1 ft. Orifice 3 Diameter: 0.688 in. Elevation:2 ft.

Element Outlets:

Outlet 1 Outlet 2


Outlet Flows To:


#### Vault Hydraulic Table

| Stage(feet)      | Area(ac.)      | Volume(ac-ft.) | Discharge(cfs) |                |
|------------------|----------------|----------------|----------------|----------------|
| 0.0000           | 0.029          | 0.000          | 0.000          | 0.000          |
| 0.0667           | 0.029          | 0.002          | 0.048          | 0.000          |
| 0.1333           | 0.029          | 0.004          | 0.068          | 0.000          |
| 0.2000           | 0.029          | 0.006          | 0.083          | 0.000          |
| 0.2667           | 0.029          | 0.008          | 0.096          | 0.000          |
| 0.3333           | 0.029          | 0.009          | 0.108          | 0.000          |
| 0.4000           | 0.029          | 0.011          | 0.118          | 0.000          |
| 0.4667           | 0.029          | 0.013          | 0.127          | 0.000          |
| 0.5333           | 0.029          | 0.015          | 0.136          | 0.000          |
| 0.6000           | 0.029          | 0.017          | 0.144          | 0.000          |
| 0.6667           | 0.029          | 0.019          | 0.152          | 0.000          |
| 0.7333           | 0.029          | 0.021          | 0.160          | 0.000          |
| 0.8000           | 0.029          | 0.023          | 0.167          | 0.000          |
| 0.8667           | 0.029          | 0.025          | 0.174          | 0.000          |
| 0.9333           | 0.029          | 0.027          | 0.180          | 0.000          |
| 1.0000           | 0.029          | 0.029          | 0.187          | 0.000          |
| 1.0667           | 0.029          | 0.031          | 0.193          | 0.000          |
| 1.1333           | 0.029          | 0.033          | 0.206          | 0.000          |
| 1.2000           | 0.029          | 0.035          | 0.216          | 0.000          |
| 1.2667           | 0.029          | 0.037          | 0.226          | 0.000          |
| 1.3333           | 0.029          | 0.039          | 0.234          | 0.000          |
| 1.4000           | 0.029          | 0.041          | 0.242          | 0.000          |
| 1.4667           | 0.029          | 0.043          | 0.249          | 0.000          |
| 1.5333           | 0.029          | 0.045          | 0.256          | 0.000          |
| 1.6000           | 0.029          | 0.047          | 0.263          | 0.000          |
| 1.6667<br>1.7333 | 0.029          | 0.049          | 0.270<br>0.276 | 0.000          |
|                  | 0.029          | 0.051          |                | 0.000          |
| 1.8000           | 0.029<br>0.029 | 0.053          | 0.282<br>0.289 | 0.000<br>0.000 |
| 1.8667<br>1.9333 | 0.029          | 0.055          | 0.209          | 0.000          |
| 2.0000           | 0.029          | 0.057<br>0.059 | 0.300          | 0.000          |
| 2.0667           | 0.029          | 0.061          | 0.309          | 0.000          |
| 2.1333           | 0.029          | 0.063          | 0.316          | 0.000          |
| 2.2000           | 0.029          | 0.065          | 0.310          | 0.000          |
| 2.2667           | 0.029          | 0.067          | 0.323          | 0.000          |
| 2.3333           | 0.029          | 0.069          | 0.329          | 0.000          |
| 2.4000           | 0.029          | 0.009          | 0.335          | 0.000          |
| 2.4000           | 0.023          | 0.07 1         | 0.041          | 0.000          |

| 2.4667<br>2.5333<br>2.6000<br>2.6667<br>2.7333<br>2.8000<br>2.8667<br>2.9333<br>3.0000<br>3.0667<br>3.1333<br>3.2000<br>3.2667<br>3.3333<br>3.4000 | 0.029<br>0.029<br>0.029<br>0.029<br>0.029<br>0.029<br>0.029<br>0.029<br>0.029<br>0.029<br>0.029<br>0.029<br>0.029 | 0.073<br>0.075<br>0.077<br>0.079<br>0.081<br>0.083<br>0.085<br>0.087<br>0.089<br>0.091<br>0.093<br>0.095<br>0.097<br>0.099          | 0.347<br>0.352<br>0.358<br>0.363<br>0.369<br>0.374<br>0.379<br>0.384<br>0.389<br>0.394<br>0.399<br>0.404<br>0.408<br>0.413<br>0.418 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 3.4667<br>3.5333<br>3.6000<br>3.6667<br>3.7333<br>3.8000<br>3.8667<br>3.9333<br>4.0000<br>4.0667<br>4.1333<br>4.2000<br>4.2667<br>4.3333<br>4.4000 | 0.029<br>0.029<br>0.029<br>0.029<br>0.029<br>0.029<br>0.029<br>0.029<br>0.029<br>0.029<br>0.029<br>0.029<br>0.029 | 0.103<br>0.105<br>0.107<br>0.109<br>0.111<br>0.113<br>0.115<br>0.117<br>0.119<br>0.121<br>0.123<br>0.125<br>0.127<br>0.129<br>0.131 | 0.422<br>0.427<br>0.431<br>0.435<br>0.440<br>0.444<br>0.448<br>0.453<br>0.457<br>0.461<br>0.465<br>0.469<br>0.473<br>0.477<br>0.481 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 |
| 4.4667<br>4.5333<br>4.6000<br>4.6667<br>4.7333<br>4.8000<br>4.8667<br>4.9333<br>5.0000<br>5.0667<br>5.1333<br>5.2000<br>5.2667<br>5.3333           | 0.029<br>0.029<br>0.029<br>0.029<br>0.029<br>0.029<br>0.029<br>0.029<br>0.029<br>0.029<br>0.029<br>0.029          | 0.133<br>0.135<br>0.137<br>0.139<br>0.141<br>0.143<br>0.145<br>0.147<br>0.149<br>0.151<br>0.153<br>0.155<br>0.157<br>0.159          | 0.485<br>0.489<br>0.493<br>0.497<br>0.501<br>0.504<br>0.508<br>0.512<br>0.515<br>0.701<br>1.032<br>1.434<br>1.848<br>2.217          | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000          |
| 5.4000<br>5.4667<br>5.5333<br>5.6000<br>5.6667<br>5.7333<br>5.8000<br>5.8667<br>5.9333<br>6.0000<br>6.0667<br>6.1333                               | 0.029<br>0.029<br>0.029<br>0.029<br>0.029<br>0.029<br>0.029<br>0.029<br>0.029<br>0.029<br>0.029                   | 0.161<br>0.163<br>0.165<br>0.167<br>0.169<br>0.171<br>0.173<br>0.175<br>0.177<br>0.179<br>0.181<br>0.000                            | 2.497<br>2.679<br>2.844<br>2.987<br>3.123<br>3.252<br>3.375<br>3.493<br>3.607<br>3.718<br>3.824<br>3.928                            | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                   |

# Analysis Results POC 1





+ Predeveloped x Mitigated

Predeveloped Landuse Totals for POC #1

Total Pervious Area: 4.721 Total Impervious Area:

Mitigated Landuse Totals for POC #1 Total Pervious Area: 0.689 Total Impervious Area: 1.339

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1

Return Period Flow(cfs) 2 year 0.319776 5 year 0.540187 10 year 0.718808 25 year 0.983517 50 year 1.210289 1.463467 100 year

Flow Frequency Return Periods for Mitigated. POC #1

Return Period

Flow(cfs)
0.33375 2-yr release rate for treatment design. 2 year

5 year 0.407973 10 year 0.460155 25 year 0.529557 50 vear 0.58383 100 year 0.64036

#### **Annual Peaks**

Annual Peaks for Predeveloped and Mitigated. POC #1

| Year | Predeveloped | Mitigated |
|------|--------------|-----------|
| 1949 | 0.580        | 0.485     |
| 1950 | 0.190        | 0.313     |
| 1951 | 0.414        | 0.333     |
| 1952 | 0.185        | 0.351     |
| 1953 | 0.284        | 0.307     |
| 1954 | 0.628        | 0.358     |
| 1955 | 0.521        | 0.448     |
| 1956 | 2.730        | 0.414     |
| 1957 | 0.449        | 0.318     |
| 1958 | 0.627        | 0.333     |
|      |              |           |

# Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1

| i tai ii ta a i ii ii aa i |              | 5 1 0.0 p 0 a a |
|----------------------------|--------------|-----------------|
| Rank                       | Predeveloped | Mitigated       |
| 1                          | 2.7299       | 0.8255          |
| 2                          | 0.8810       | 0.6254          |
| 3                          | 0.8479       | 0.4850          |

| 45678910112314561789011234567893313334567894123445647849551555555555567896 | 0.7140<br>0.6287<br>0.6275<br>0.6274<br>0.5946<br>0.5803<br>0.5391<br>0.5371<br>0.5205<br>0.4685<br>0.4629<br>0.4565<br>0.4504<br>0.4494<br>0.4372<br>0.4238<br>0.4194<br>0.4141<br>0.3990<br>0.3841<br>0.3740<br>0.3674<br>0.3674<br>0.3658<br>0.3674<br>0.3658<br>0.3624<br>0.3449<br>0.3448<br>0.3426<br>0.3342<br>0.3346<br>0.3115<br>0.3024<br>0.3020<br>0.2952<br>0.2947<br>0.2840<br>0.2952<br>0.2947<br>0.2840<br>0.2952<br>0.2947<br>0.2840<br>0.2952<br>0.2947<br>0.2840<br>0.2952<br>0.2952<br>0.2947<br>0.2840<br>0.2952<br>0.2952<br>0.2947<br>0.2840<br>0.3020<br>0.2952<br>0.2952<br>0.2947<br>0.2840<br>0.2952<br>0.2952<br>0.2947<br>0.2840<br>0.3115<br>0.3024<br>0.3020<br>0.2952<br>0.2952<br>0.2947<br>0.2840<br>0.2165<br>0.2081<br>0.1903<br>0.1845<br>0.1903<br>0.1845<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903<br>0.1903 | 0.4772<br>0.4663<br>0.4483<br>0.4351<br>0.4275<br>0.4162<br>0.4145<br>0.4113<br>0.4041<br>0.3900<br>0.3866<br>0.3722<br>0.3659<br>0.3657<br>0.3656<br>0.3545<br>0.3545<br>0.3545<br>0.3545<br>0.3542<br>0.3545<br>0.3542<br>0.3545<br>0.3542<br>0.3547<br>0.3150<br>0.3227<br>0.3227<br>0.3178<br>0.3178<br>0.3178<br>0.3170<br>0.3134<br>0.3133<br>0.3177<br>0.3140<br>0.3134<br>0.3133<br>0.3177<br>0.3074<br>0.3052<br>0.3015<br>0.3015<br>0.3016<br>0.2993<br>0.2916<br>0.2892<br>0.2851<br>0.2852<br>0.2851<br>0.2852<br>0.2851<br>0.2852<br>0.2852<br>0.2853<br>0.2853<br>0.2853<br>0.2993<br>0.2916<br>0.2852<br>0.2853<br>0.2853<br>0.2853<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2854<br>0.2855<br>0.2854<br>0.2854<br>0.2855<br>0.2854<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2854<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855<br>0.2855 |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 60                                                                         | 0.0813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 61                                                                         | 0.0734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

2025-11-11- Vault 11/12/2025 3:26:57 PM Page 10

# **Duration Flows**

# The Facility PASSED

| Flow(cfs) 0.1599 0.1705 0.1811 0.1917 0.2023 0.2129 0.2235 0.2342 0.2448 0.2554 0.2660 0.2766 0.2872 0.2978 0.3084 0.3190 0.3296 0.3403 0.3509 0.3615 0.3721 0.3827 0.3933 0.4039 0.4145 0.4251 0.4358 0.4464 0.4570 0.4676 0.4782 0.4888 0.4994 0.5100 0.5206 0.5312 0.5419 0.5525 0.5631 0.5737 0.5843 0.5949 0.6055 0.6161 | Predev 19430 16279 13488 11460 9557 8153 6776 5495 4616 3773 3144 2524 2014 1676 1310 1091 896 749 652 587 516 457 393 328 263 193 154 113 83 59 49 38 17 14 13 12 10 10 10 9 9 8 8 | Mit 19383 15744 12476 10085 8615 7557 6421 5373 4451 3587 2892 2319 1748 1355 1079 850 686 558 471 391 330 264 189 151 129 104 87 75 64 48 32 23 18 11 11 11 11 19 9 9 8 8 7 | Percentage 99 96 92 88 90 92 94 97 96 95 91 86 80 82 77 76 74 72 66 63 57 48 46 49 53 56 66 77 81 65 60 105 92 84 91 110 110 90 90 100 88 100 87 | Pass/Fail Pass Pass Pass Pass Pass Pass Pass Pas |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 0.5525<br>0.5631<br>0.5737<br>0.5843<br>0.5949<br>0.6055                                                                                                                                                                                                                                                                      | 10<br>10<br>10<br>9<br>9                                                                                                                                                            | 11<br>9<br>9<br>9<br>8<br>8                                                                                                                                                  | 110<br>90<br>90<br>100<br>88<br>100                                                                                                              | Pass<br>Pass<br>Pass<br>Pass<br>Pass             |

| 0.7222<br>0.7328<br>0.7434<br>0.7541<br>0.7647<br>0.7753<br>0.7859<br>0.7965<br>0.8071<br>0.8177<br>0.8283<br>0.8389<br>0.8495<br>0.8602<br>0.8708<br>0.8814<br>0.8920<br>0.9026<br>0.9132<br>0.9238<br>0.9450<br>0.9556<br>0.9663<br>0.9769<br>0.9875 | 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 2 2 2 2 | 4<br>4<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 100<br>100<br>50<br>50<br>50<br>25<br>25<br>25<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Pass Pass Pass Pass Pass Pass Pass Pass |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------|
| 1.0087<br>1.0193<br>1.0299<br>1.0405<br>1.0511<br>1.0617<br>1.0724<br>1.0830<br>1.0936<br>1.1042<br>1.1148<br>1.1254<br>1.1360<br>1.1466<br>1.1572                                                                                                     | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                    | 000000000000000000000000000000000000000                                                     | Pass Pass Pass Pass Pass Pass Pass Pass |
| 1.1678<br>1.1785<br>1.1891<br>1.1997<br>1.2103                                                                                                                                                                                                         | 2<br>2<br>2<br>2<br>2                   | 0<br>0<br>0<br>0                                                                                           | 0<br>0<br>0<br>0                                                                            | Pass<br>Pass<br>Pass<br>Pass<br>Pass    |

2025-11-11- Vault 11/12/2025 3:26:57 PM Page 13

### **Water Quality**

Water Quality
Water Quality BMP Flow and Volume for POC #1
On-line facility volume: 1.9386 acre-feet
On-line facility target flow: 2.2277 cfs.
Adjusted for 15 min: 2.2277 cfs.
Off-line facility target flow: 1.2601 cfs.
Adjusted for 15 min: 1.2601 cfs.

2025-11-11- Vault 11/12/2025 3:26:57 PM Page 14

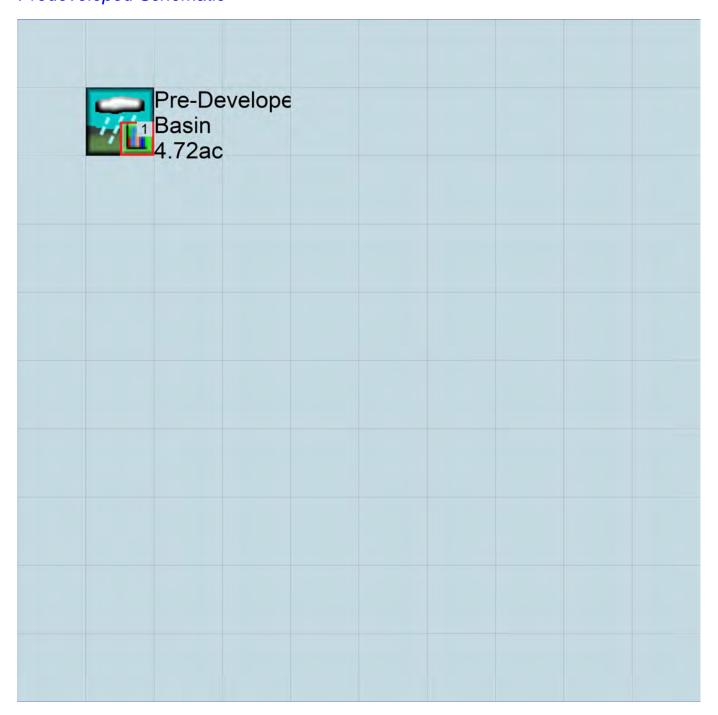
### POC 2

POC #2 was not reported because POC must exist in both scenarios and both scenarios must have been run.

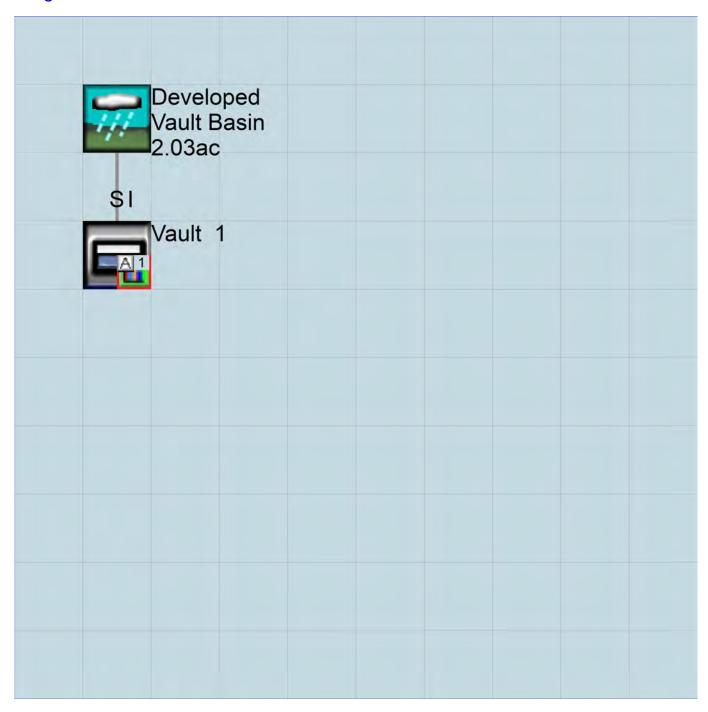
# Model Default Modifications

Total of 0 changes have been made.

# **PERLND Changes**


No PERLND changes have been made.

# **IMPLND Changes**


No IMPLND changes have been made.

2025-11-11- Vault 11/12/2025 3:26:57 PM Page 16

# Appendix Predeveloped Schematic



# Mitigated Schematic



### Predeveloped UCI File

```
RUN
```

```
GLOBAL
 WWHM4 model simulation
                     END
3 0
 START 1948 10 01
                             2009 09 30
 RUN INTERP OUTPUT LEVEL
 RESUME 0 RUN 1
                                  UNIT SYSTEM 1
END GLOBAL
FILES
<File> <Un#>
           <---->***
<-ID->
WDM
        26
            2025-11-11- Vault.wdm
MESSU
        25
           Pre2025-11-11- Vault.MES
            Pre2025-11-11- Vault.L61
        27
           Pre2025-11-11- Vault.L62
POC2025-11-11- Vault1.dat
         28
        30
END FILES
OPN SEQUENCE
   INGRP
            10
                 INDELT 00:15
    PERLND
             501
    COPY
   DISPLY
   END INGRP
END OPN SEQUENCE
DISPLY
 DISPLY-INFO1
   # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
  1 Pre-Developed Basin MAX
                                                  1 2 30
 END DISPLY-INFO1
END DISPLY
COPY
 TIMESERIES
  # - # NPT NMN ***
   1 1
)1 1
             1
 501
               1
 END TIMESERIES
END COPY
GENER
 OPCODE
 # # OPCD ***
 END OPCODE
 PARM
           K ***
  #
 END PARM
END GENER
PERLND
 GEN-INFO
   <PLS ><----Name---->NBLKS Unit-systems Printer ***
                           User t-series Engl Metr ***
                                 in out
                           1
  10 C, Forest, Flat
 END GEN-INFO
 *** Section PWATER***
 ACTIVITY
  # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
10 0 0 1 0 0 0 0 0 0 0 0
 END ACTIVITY
 PRINT-INFO
   <PLS > ********** Print-flags ******************************* PIVL PYR
  END PRINT-INFO
```

```
PWAT-PARM1
   <PLS > PWATER variable monthly parameter value flags ***
  # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***
10 0 0 0 0 0 0 0 0 0 0
 END PWAT-PARM1
 PWAT-PARM2
  END PWAT-PARM2
 PWAT-PARM3
  PWAT-PARM3

<PLS > PWATER input info: Part 3 ***

# - # ***PETMAX PETMIN INFEXP INFILD DEEPFR

10 0 0 2 2 0
                                                           BASETP
                                                0 0
 END PWAT-PARM3
 PWAT-PARM4
   <PLS > PWATER input info: Part 4
  # - # CEPSC UZSN NSUR INTFW IRC LZETP ***
10 0.2 0.5 0.35 6 0.5 0.7
 END PWAT-PARM4
 PWAT-STATE1
   <PLS > *** Initial conditions at start of simulation
    ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
   # - # *** CEPS SURS UZS IFWS LZS AGWS .0 0 0 0 2.5 1
                                                                    GWVS
  10
 END PWAT-STATE1
END PERLND
IMPLND
 GEN-INFO
   <PLS ><----- Name----> Unit-systems Printer ***
   # - #
                           User t-series Engl Metr ***
                                  in out
 END GEN-INFO
 *** Section IWATER***
 ACTIVITY
   <PLS > ******** Active Sections *********************
   # - # ATMP SNOW IWAT SLD IWG IQAL ***
 END ACTIVITY
 PRINT-INFO
   <ILS > ******* Print-flags ******* PIVL PYR
   # - # ATMP SNOW IWAT SLD IWG IQAL *******
 END PRINT-INFO
  <PLS > IWATER variable monthly parameter value flags ***
   # - # CSNO RTOP VRS VNN RTLI ***
 END IWAT-PARM1
 IWAT-PARM2
   <PLS > IWATER input info: Part 2 ***
# - # *** LSUR SLSUR NSUR RETSC
 END IWAT-PARM2
 IWAT-PARM3
   <PLS > IWATER input info: Part 3
   # - # ***PETMAX PETMIN
 END IWAT-PARM3
   <PLS > *** Initial conditions at start of simulation
   # - # *** RETS SURS
 END IWAT-STATE1
```

```
SCHEMATIC
                   <--Area--> <-Target-> MBLK ***
<-factor-> <Name> # Tbl# ***
<-Source->
Pre-Developed Basin***
                       4.721 COPY 501 12
4.721 COPY 501 13
PERLND 10
PERLND 10
*****Routing****
END SCHEMATIC
NETWORK
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
END NETWORK
RCHRES
 GEN-INFO
  RCHRES Name Nexits Unit Systems Printer
  # - #<----> User T-series Engl Metr LKFG
                                                        * * *
                                                        * * *
                               in out
 END GEN-INFO
 *** Section RCHRES***
 ACTIVITY
  # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG ***
 END ACTIVITY
 PRINT-INFO
  <PLS > ******** Print-flags ******** PIVL PYR
   # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR *******
 END PRINT-INFO
 HYDR-PARM1
  RCHRES Flags for each HYDR Section
  # - # VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each FG FG FG possible exit *** possible exit possible exit ***
 END HYDR-PARM1
 HYDR-PARM2
 # - # FTABNO LEN DELTH STCOR
                                         KS
                                               DB50
 <----><----><---->
                                                        * * *
 END HYDR-PARM2
  RCHRES Initial conditions for each HYDR section
  # *** v.
*** ac-ft
 <---->
                <---><---><---><--->
 END HYDR-INIT
END RCHRES
SPEC-ACTIONS
END SPEC-ACTIONS
FTABLES
END FTABLES
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<Name> # # ***
```

|                                           | EVAP<br>EVAP    | ENGL<br>ENGL      | 0.76<br>0.76                                             |                                 | . 999<br>. 999 | EXTNL<br>EXTNL | PETINP<br>PETINP            |  |
|-------------------------------------------|-----------------|-------------------|----------------------------------------------------------|---------------------------------|----------------|----------------|-----------------------------|--|
| END EXT SOU                               | JRCES           |                   |                                                          |                                 |                |                |                             |  |
| EXT TARGETS                               | 5               |                   |                                                          |                                 |                |                |                             |  |
| <name> #</name>                           | OUTPUT          | <name> # =</name> | > <mult>Tran<br/>#&lt;-factor-&gt;strg<br/>1 48.4</mult> | <name> ‡</name>                 |                | ne>            | sys Tgap<br>tem strg<br>NGL |  |
| MASS-LINK                                 |                 |                   |                                                          |                                 |                |                |                             |  |
| <volume> <name> MASS-LINE</name></volume> | -               |                   | > <mult><br/>#&lt;-factor-&gt;</mult>                    | <target> <name></name></target> |                | <-Grp>         | <-Member                    |  |
| PERLND<br>END MASS-                       | PWATER          |                   | 0.083333                                                 | COPY                            |                | INPUT          | MEAN                        |  |
| MASS-LINE                                 |                 | 13                |                                                          |                                 |                |                |                             |  |
| PERLND<br>END MASS-                       | PWATER<br>-LINK | IFWO<br>13        | 0.083333                                                 | COPY                            |                | INPUT          | MEAN                        |  |

END MASS-LINK

END RUN

### Mitigated UCI File

RUN

```
GLOBAL
 WWHM4 model simulation
                       END 2009 09 30
3 0
 START 1948 10 01
 RUN INTERP OUTPUT LEVEL
 RESUME 0 RUN 1
                                     UNIT SYSTEM 1
END GLOBAL
FILES
<File> <Un#>
             <---->***
<-ID->
              2025-11-11- Vault.wdm
WDM
         26
MESSU
         25
            Mit2025-11-11- Vault.MES
         27
             Mit2025-11-11- Vault.L61
            Mit2025-11-11- Vault.L62
POC2025-11-11- Vault1.dat
         28
         30
END FILES
OPN SEQUENCE
   INGRP
                   INDELT 00:15
              14
    PERLND
              2
     IMPLND
               4
     IMPLND
               1
1
     RCHRES
     COPY
    COPY
              501
    DISPLY
               1
   END INGRP
END OPN SEQUENCE
DISPLY
 DISPLY-INFO1
   # - #<----->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
       Vault 1
   1
                                    MAX
 END DISPLY-INFO1
END DISPLY
COPY
 TIMESERIES
  # - # NPT NMN ***
   1 1 1
 501
           1
                1
 END TIMESERIES
END COPY
GENER
 OPCODE
  # # OPCD ***
 END OPCODE
 PARM
              K ***
 END PARM
END GENER
PERLND
 GEN-INFO
   <PLS ><----Name---->NBLKS Unit-systems Printer ***
                          User t-series Engl Metr ***
                                     in out
  14 C, Pasture, Mod
                                      1 1
                             1
 END GEN-INFO
 *** Section PWATER***
 ACTIVITY
   <PLS > ********* Active Sections *********************
  # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
14 0 0 1 0 0 0 0 0 0 0 0
 END ACTIVITY
 PRINT-INFO
   <PLS > ********** Print-flags *************** PIVL PYR
```

```
END PRINT-INFO
 PWAT-PARM1
  <PLS > PWATER variable monthly parameter value flags ***
  # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***
14 0 0 0 0 0 0 0 0 0 0
 END PWAT-PARM1
 PWAT-PARM2
  VMAT-PARM2

<PLS > PWATER input info: Part 2 ***

# - # ***FOREST LZSN INFILT LSUR SLSUR KVARY AGWRC

14 0 4.5 0.06 400 0.1 0.5 0.996
 END PWAT-PARM2
 PWAT-PARM3
  INFILD DEEPFR
                                                             BASETP
                                                  0
                                                           0
                                                                      0
 END PWAT-PARM3
 PWAT-PARM4
  <PLS >
            PWATER input info: Part 4
  # - # CEPSC UZSN NSUR
14 0.15 0.4 0.3
                                         INTFW IRC LZETP ***
6 0.5 0.4
                       0.4
                                0.3
 END PWAT-PARM4
 PWAT-STATE1
  <PLS > *** Initial conditions at start of simulation
           ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
      # *** CEPS SURS UZS IFWS LZS AGWS
0 0 0 0 2.5 1
                                                                       GWVS
 END PWAT-STATE1
END PERLND
IMPLND
 GEN-INFO
   <PLS ><----- Name----> Unit-systems Printer ***
                           User t-series Engl Metr ***
                            in out ***

1 1 1 27 0
1 1 1 27 0
         ROADS/MOD
  4
        ROOF TOPS/FLAT
 END GEN-INFO
  *** Section IWATER***
 ACTIVITY
   <PLS > ******** Active Sections **********************
  # - # ATMP SNOW IWAT SLD IWG IQAL
2 0 0 1 0 0 0
4 0 0 1 0 0 0
 END ACTIVITY
 PRINT-INFO
   <ILS > ******* Print-flags ******* PIVL PYR
   # - # ATMP SNOW IWAT SLD IWG IQAL ********
2     0     0     4     0     0     4     1     9
4     0     0     4     0     0     1     9
 END PRINT-INFO
 IWAT-PARM1
   <PLS > IWATER variable monthly parameter value flags ***
   # - # CSNO RTOP VRS VNN RTLI ***
   2 0 0 0 0 0 0
4 0 0 0 0 0
 END IWAT-PARM1
 IWAT-PARM2
             IWATER input info: Part 2
   <PLS >
   # - # *** LSUR SLSUR NSUR
```

```
      400
      0.05
      0.1
      0.08

      400
      0.01
      0.1
      0.1

   2
   4
 END IWAT-PARM2
 IWAT-PARM3
   <PLS > IWATER input info: Part 3
   # - # ***PETMAX PETMIN
     ..
0 0
0 0
 END IWAT-PARM3
 IWAT-STATE1
  <PLS > *** Initial conditions at start of simulation
   # - # *** RETS SURS
     0
   4
                       0
                0
 END IWAT-STATE1
END IMPLND
SCHEMATIC
                      <--Area--> <-Target-> MBLK
<-factor-> <Name> # Tbl#
<-Source->
<Name> #
Developed Vault Basin***
                           0.689 RCHRES 1 2
0.689 RCHRES 1 3
0.791 RCHRES 1 5
0.548 RCHRES 1 5
PERLND 14
PERLND 14
IMPLND 2
IMPLND 4
*****Routing****
                           0.689 COPY 1 12
0.791 COPY 1 15
0.548 COPY 1 15
0.689 COPY 1 13
1 COPY 501 16
PERLND 14
IMPLND 2
IMPLND 4
PERLND 14
RCHRES 1
END SCHEMATIC
NETWORK
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
END NETWORK
RCHRES
 GEN-INFO
  RCHRES Name Nexits Unit Systems Printer
                                                                 * * *
                                                                 * * *
  # - #<----- User T-series Engl Metr LKFG
                                                                 * * *
                                   in out
  1 Vault 1
                         1
                                1 1 1 28 0 1
 END GEN-INFO
 *** Section RCHRES***
 ACTIVITY
  END ACTIVITY
 PRINT-INFO
  <PLS > ********** Print-flags ********** PIVL PYR
   # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR 1 0 0 0 0 0 0 0 0 0 1 9
                                                             ******
 END PRINT-INFO
 HYDR-PARM1
```

2025-11-11- Vault 11/12/2025 3:26:58 PM Page 25

```
RCHRES Flags for each HYDR Section
         # - # VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each FG FG FG FG possible exit *** possible exit possible exit the possible exit to be possible exit t
    END HYDR-PARM1
    HYDR-PARM2
      #-# FTABNO LEN DELTH STCOR KS DB50
                                                                                                                                                                                       * * *
     <----><----><---->
      1
                     1 0.01 0.0 0.0 0.5 0.0
     END HYDR-PARM2
    HYDR-INIT
        RCHRES Initial conditions for each HYDR section
         # - # *** VOL Initial value of COLIND Initial value of OUTDGT

*** ac-ft for each possible exit for each possible exit
                                                    <---->
         1 0
                                                          4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
    END HYDR-INIT
END RCHRES
SPEC-ACTIONS
END SPEC-ACTIONS
FTABLES
    FTABLE
      92 4
    Depth Area Volume Outflow1 Velocity Travel Time***
(ft) (acres) (acre-ft) (cfs) (ft/sec) (Minutes)***
0.000000 0.029844 0.000000 0.000000
0.066667 0.029844 0.001990 0.048280
     0.200000 0.029844 0.005969 0.083624
     0.266667 0.029844 0.007958 0.096561
     0.333333 0.029844 0.009948 0.107958
    0.400000 0.029844 0.011938 0.118263

      0.4400000
      0.029844
      0.011938
      0.118263

      0.466667
      0.029844
      0.013927
      0.127738

      0.5333333
      0.029844
      0.015917
      0.136558

      0.600000
      0.029844
      0.017906
      0.144841

      0.666667
      0.029844
      0.019896
      0.152676

      0.733333
      0.029844
      0.021886
      0.160128

      0.80000
      0.029844
      0.023875
      0.167249

    0.866667 0.029844 0.025865 0.174078
0.933333 0.029844 0.027854 0.180649
    1.000000 0.029844 0.029844 0.186990
    1.066667 \quad 0.029844 \quad 0.031833 \quad 0.193122

      1.133333
      0.029844
      0.033823
      0.206052

      1.200000
      0.029844
      0.035813
      0.216938

      1.266667
      0.029844
      0.037802
      0.226072

      1.333333
      0.029844
      0.039792
      0.234402

    1.400000 0.029844 0.041781 0.242209
    1.466667 0.029844 0.043771 0.249627
    1.533333 0.029844 0.045761 0.256736
    1.600000 0.029844 0.047750 0.263584
    1.666667 0.029844 0.049740 0.270209
    2.066667 0.029844 0.061677 0.309750
     2.133333 0.029844 0.063667 0.316699
     2.200000 0.029844 0.065657 0.323221
     2.266667 0.029844 0.067646 0.329478
     2.600000 0.029844 0.077594 0.358314
     2.666667 0.029844 0.079584 0.363723
     2.733333 0.029844 0.081573 0.369036
```

```
2.800000
            0.029844
                       0.083563
                                  0.374260
                                  0.379400
  2.866667
            0.029844
                       0.085552
  2.933333
            0.029844
                       0.087542
                                  0.384462
  3.000000
            0.029844
                       0.089532
                                  0.389449
            0.029844
                       0.091521
  3.066667
                                  0.394366
  3.133333
            0.029844
                       0.093511
                                  0.399216
                       0.095500
  3.200000
            0.029844
                                  0.404002
            0.029844
                       0.097490
  3.266667
                                  0.408727
  3.333333
            0.029844
                       0.099480
                                  0.413393
  3.400000
             0.029844
                       0.101469
                                  0.418003
  3.466667
             0.029844
                       0.103459
                                  0.422559
  3.533333
             0.029844
                       0.105448
                                  0.427063
  3.600000
             0.029844
                       0.107438
                                  0.431518
             0.029844
  3.666667
                       0.109428
                                  0.435924
  3.733333
             0.029844
                       0.111417
                                  0.440283
             0.029844
                       0.113407
                                  0.444597
  3.800000
                       0.115396
  3.866667
            0.029844
                                  0.448868
  3.933333
             0.029844
                       0.117386
                                  0.453097
  4.000000
             0.029844
                       0.119376
                                  0.457285
  4.066667
             0.029844
                       0.121365
                                  0.461433
            0.029844
  4.133333
                       0.123355
                                  0.465543
  4.200000
                       0.125344
            0.029844
                                  0.469615
  4.266667
            0.029844
                       0.127334
                                  0.473652
            0.029844
                       0.129324
                                  0.477652
  4.333333
            0.029844
  4.400000
                       0.131313
                                  0.481619
            0.029844
                       0.133303
  4.466667
                                  0.485552
                                  0.489452
  4.533333
            0.029844
                       0.135292
  4.600000
            0.029844
                       0.137282
                                  0.493321
             0.029844
                       0.139272
                                  0.497159
  4.666667
  4.733333
             0.029844
                       0.141261
                                  0.500966
            0.029844
                                  0.504745
  4.800000
                       0.143251
             0.029844
                       0.145240
                                  0.508494
  4.866667
  4.933333
             0.029844
                       0.147230
                                  0.512215
  5.000000
             0.029844
                       0.149219
                                  0.515909
  5.066667
            0.029844
                       0.151209
                                  0.701810
  5.133333
            0.029844
                       0.153199
                                  1.032879
  5.200000
            0.029844
                       0.155188
                                  1.434508
            0.029844
                       0.157178
  5.266667
                                  1.848501
  5.333333
             0.029844
                       0.159167
                                  2.217454
  5.400000
            0.029844
                       0.161157
                                  2.497562
            0.029844
  5.466667
                       0.163147
                                  2.679371
  5.533333
            0.029844
                       0.165136
                                  2.844704
  5.600000
            0.029844
                       0.167126
                                  2.987704
            0.029844
  5.666667
                       0.169115
                                  3.123123
            0.029844
                       0.171105
  5.733333
                                  3.252071
  5.800000
            0.029844
                       0.173095
                                  3.375410
  5.866667
            0.029844
                       0.175084
                                  3.493826
             0.029844
                       0.177074
                                  3.607877
  5.933333
             0.029844
                       0.179063
  6,000000
                                  3.718020
            0.029844
                       0.181053
                                  3.824638
  6.066667
  END FTABLE
              1
END FTABLES
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member->
                                                                                   * * *
<Name>
         # <Name> # tem strg<-factor->strg <Name>
                                                       # #
                                                                      <Name> # #
         2 PREC
                     ENGL
                              0.8
                                                        1 999 EXTNL
WDM
                                              PERLND
                                                                     PREC
WDM
         2 PREC
                     ENGL
                              0.8
                                              IMPLND
                                                       1 999 EXTNL
                                                                     PREC
MDM
         1 EVAP
                     ENGL
                              0.76
                                                       1 999 EXTNL
                                                                     PETINP
                                              PERLND
M \cap M
         1 EVAP
                     ENGL
                              0.76
                                              IMPLND
                                                       1 999 EXTNL
                                                                     PETINP
END EXT SOURCES
EXT TARGETS
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd ***
<Name>
                   <Name> # #<-factor->strg <Name>
                                                       # <Name>
                                                                    tem strg strg***
RCHRES
         1
           HYDR
                   RO
                          1 1
                                      1
                                              WDM
                                                    1002 FLOW
                                                                   ENGL
                                                                              REPL
                          1 1
                   STAGE
                                                    1003 STAG
RCHRES
         1 HYDR
                                      1
                                              WDM
                                                                   ENGL
                                                                              REPL
         1 OUTPUT MEAN
                          1 1
                                   48.4
                                                     701 FLOW
COPY
                                              WDM
                                                                   ENGL
                                                                              REPL
COPY
       501 OUTPUT MEAN
                          1 1
                                   48.4
                                              WDM
                                                     801 FLOW
                                                                   ENGL
                                                                              REPL
```

### END EXT TARGETS

| MASS-LINK <volume> &lt;-Grp&gt; <name> MASS-LINK PERLND PWATER</name></volume> | <name> # # 2</name> |          | <target> <name> RCHRES</name></target> | <-Grp>   | <-Member->*** <name> # #***</name> |
|--------------------------------------------------------------------------------|---------------------|----------|----------------------------------------|----------|------------------------------------|
| END MASS-LINK                                                                  | 2                   | 0.003333 | Keines                                 | INI. HOW | 1001                               |
| MASS-LINK<br>PERLND PWATER<br>END MASS-LINK                                    | 3<br>IFWO<br>3      | 0.083333 | RCHRES                                 | INFLOW   | IVOL                               |
| MASS-LINK<br>IMPLND IWATER<br>END MASS-LINK                                    | 5<br>SURO<br>5      | 0.083333 | RCHRES                                 | INFLOW   | IVOL                               |
| MASS-LINK<br>PERLND PWATER<br>END MASS-LINK                                    | 12<br>SURO<br>12    | 0.083333 | СОРУ                                   | INPUT    | MEAN                               |
| MASS-LINK<br>PERLND PWATER<br>END MASS-LINK                                    | 13<br>IFWO<br>13    | 0.083333 | СОРУ                                   | INPUT    | MEAN                               |
| MASS-LINK<br>IMPLND IWATER<br>END MASS-LINK                                    | 15<br>SURO<br>15    | 0.083333 | СОРУ                                   | INPUT    | MEAN                               |
| MASS-LINK<br>RCHRES ROFLOW<br>END MASS-LINK                                    | 16<br>16            |          | COPY                                   | INPUT    | MEAN                               |

END MASS-LINK

END RUN

# Predeveloped HSPF Message File

# Mitigated HSPF Message File

# Disclaimer

### Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2025; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

2025-11-11- Vault 11/12/2025 3:26:58 PM Page 31

# Appendix B - Geotechnical Engineering Study

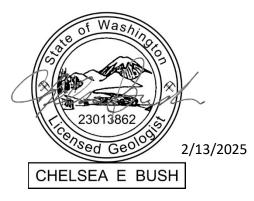
# GEOTECHNICAL ENGINEERING REPORT

Johnson Residential Development Parcel Numbers: 232601-4-001-2009, 242601-3-003-2008, and 252601-2-047-2007 Poulsbo, Washington

Prepared for: Montebanc Management, LLC

Project No. AS240561-02 • February 13, 2025 FINAL






# GEOTECHNICAL ENGINEERING REPORT

Johnson Residential Development Parcel Numbers: 232601-4-001-2009, 242601-3-003-2008, and 252601-2-047-2007 Poulsbo, Washington

Project No. AS240561-02 • February 13, 2025 FINAL

### Aspect Consulting



Chelsea E. Bush, LG Professional Geologist chelsea.bush@aspectconsulting.com

Alisa Pennisa



**Erik O. Andersen, PE**Senior Principal Geotechnical Engineer erik.andersen@aspectconsulting.com

Alison J. Dennison, LEG
Senior Engineering Geologist
alison.dennison@aspectconsulting.com

V:\AS240561 Johnson Property Moncebanc Poulsbo\FINAL\Johnson Property Geotechnical Report\_20250213.docx

# **Contents**

| 1 | Intro | roduction                                          |    |
|---|-------|----------------------------------------------------|----|
|   | 1.1   | Scope of Services                                  | 1  |
|   | 1.2   | Project Description                                |    |
| _ | 0     | •                                                  |    |
| 2 |       | rface Conditions                                   |    |
|   | 2.1   | Site Conditions                                    |    |
|   | 2.2   | Topography                                         |    |
|   | 2.3   | Drainage                                           |    |
|   | 2.4   | Vegetation                                         | 4  |
| 3 | Sub   | bsurface Conditions                                | 5  |
|   | 3.1   | Geologic Mapping                                   | 5  |
|   | 3.2   | Subsurface Investigation                           |    |
|   | 3.3   | Stratigraphy                                       |    |
|   | 3.    | .3.1 Topsoil                                       |    |
|   | _     | .3.2 Vashon Recessional Outwash                    |    |
|   | _     | .3.3 Pre-Vashon Fines: Glaciolacustrine Deposits   |    |
|   | 3.4   |                                                    |    |
|   | 3.5   | Laboratory Testing Results                         | 9  |
| 4 | Geo   | ologic Hazard and Associated Design Considerations | 11 |
|   | 4.1   | Seismic Hazards                                    |    |
|   | 4.    | .1.1 Ground Response                               |    |
|   |       | .1.2 Surficial Ground Rupture                      |    |
|   |       | .1.3 Liquefaction                                  |    |
|   |       | Landslide Hazards                                  |    |
|   |       | .2.1 Deep Seated Rotational Landslides             |    |
|   | 4.3   |                                                    |    |
|   | _     |                                                    |    |
| 5 | Con   | nclusions and Recommendations                      |    |
|   | 5.1   | Geologically Hazardous Area Considerations         | 16 |
|   | 5.2   | Foundations                                        | 16 |
|   | _     | .2.1 Shallow Foundations                           |    |
|   |       | .2.2 Slab-On-Grade Support                         |    |
|   | 5.3   | Wall Considerations                                | 18 |
|   |       |                                                    |    |
|   | 5.4   | Stormwater Drainage Considerations                 | 18 |

### **ASPECT CONSULTING**

| 6         | Construction Considerations                                    | 20 |
|-----------|----------------------------------------------------------------|----|
|           | 6.1 Wet Weather Earthwork                                      | 20 |
|           | 6.2 Site Preparation                                           | 21 |
|           | 6.3 Structural Fill                                            |    |
|           | 6.3.1 Reuse of On-Site Soils as Structural Fill                |    |
|           | 6.3.2 Compaction                                               |    |
|           |                                                                |    |
| 7         | Additional Project Design and Construction Monitoring          | 24 |
| 8         | References                                                     | 25 |
| 9         | Limitations                                                    | 27 |
|           |                                                                |    |
| <u>Li</u> | ist of Tables                                                  |    |
| 1         | Geologic Units Encountered                                     | 8  |
| 2         | Groundwater Seepage                                            | 9  |
| 3         | Summary of Particle Size Analysis Results and Moisture Content | 10 |
| 4         | Seismic Design Parameters                                      | 12 |
| 5         | Temporary Excavation Cut Slope Recommendations                 | 23 |
| Li        | ist of Figures                                                 |    |
| 1         | Vicinity Map                                                   |    |
| 2         | Site Exploration Plan                                          |    |
| 3         | Inferred Geologic Map                                          |    |
| Li        | ist of Appendices                                              |    |
| Α         | Subsurface Exploration Logs                                    |    |
| В         | Laboratory Testing Results                                     |    |
| С         | Report Limitations and Guidelines for Use                      |    |

### 1 Introduction

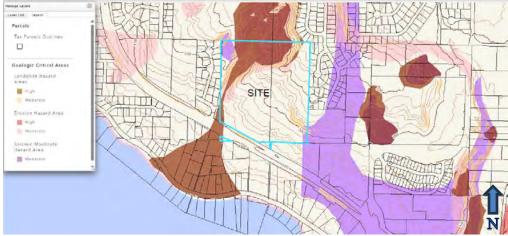
This report summarizes Aspect Consulting, a Geosyntec company's, (Aspect) geologic hazard assessment and geotechnical engineering evaluation for the proposed residential development (Project) on three parcels north of State Route 305 in Poulsbo, Washington, known as Kitsap County (County) parcel numbers 232601-4-001-2009, 242601-3-003-2008, and 252601-2-047-2007 (collectively the Site; Figure 1). We performed our services in accordance with our agreed upon scope of work dated November 22, 2024, and authorized by you on December 18, 2024.

### 1.1 Scope of Services

The purpose of this study is to provide information concerning the distribution and characteristics of subsurface soils and groundwater conditions, to assess the geologic hazards present at and near the Site, and to present geotechnical engineering design recommendations for the proposed residential development. The results of our explorations, analysis, conclusions, and recommendations presented in this report include the following:

- Site and Project description.
- Distribution and characteristics of subsurface soils and groundwater.
- Geologic hazards assessment.
- Seismic design criteria in accordance with the current version of the International Building Code (IBC) with Washington State amendments as adopted by the City of Poulsbo (City).
- Suitable foundation types, anticipated settlements, and associated design criteria including allowable soil-bearing pressures, settlement estimates, and basement or slab-on-grade considerations.
- Lateral earth pressures for design of residential basement and exterior site retaining walls up to 8 feet in height.
- General Site earthwork considerations, including
  - Evaluation of the on-Site soils for use as structural fill;
  - Temporary and permanent slope inclinations;
  - Structural fill materials and preparation; and
  - Wet weather/wet conditions considerations.
- General stormwater recommendations.

A vicinity map (Figure 1), a site exploration plan showing the locations of the explorations (Figure 2), exploration logs (Appendix A), and geotechnical laboratory testing results (Appendix B) are provided as attachments to this report.


### 1.2 Project Description

This project will include the construction of a new residential development with 80 to 90 residences and associated infrastructure at the Site. Based on current Project plans, site development will involve approximately 110,000 cubic yards of cut and 148,380 cubic yards of fill (ESM, 2024).

The County's geologic hazard map designates four hazards on the Site (Graphic 1 below):

- High landslide hazard, defined as steeper than 30 percent slopes
- Moderate landslide hazard, defined as slopes between 15 to 30 percent
- A moderate erosion hazard
- A moderate seismic hazard

The high and moderate landslide hazards and erosion hazard are mapped along a roughly north-to-south trending ravine trending from the northwest to the southwest portion of the Site. The moderate erosion hazard is in the northwest portion of the Site. The moderate seismic hazard is mapped in the northwest corner of the Site. Moderate slopes are also mapped on slopes in the southeast portion of the Site. The Site is not mapped as or within the zone of influence (300 feet) of a liquefaction hazard or fault zone.



Graphic 1. County Geologic Hazards Map (County, 2024)

The City's standard buffer is 25 feet from the top, toe, and all edges of geologically hazardous areas and areas of geologic concern, unless otherwise specified.

### 2 Surface Conditions

Aspect conducted a geologic reconnaissance on November 21, 2024, and January 2 and January 3, 2025, we observed visible geologic features such as the slope configuration and the presence of outcrops, seeps, scarps, cracks, and springs. To supplement our field observations, we reviewed County geohazards maps; County parcel maps and information; geologic maps; geomorphic maps; Light Detection and Ranging (LiDAR) studies and images; current and historical aerial photographs, oblique coastal photographs, and topographic maps; and nearby subsurface exploration logs. The following sections discuss the results of our assessment.

### 2.1 Site Conditions

The Site consists of three undeveloped parcels: 232601-4-001-2009, 242601-3-003-2008, and 252601-2-047-2007. The west parcel (232601-4-001-2009) is approximately 19 acres and measures 1,300 feet north to south and 660 feet east to west, with State Highway 305 crossing through the southwest corner of the parcel. The east parcel (242601-3-003-2008) is approximately 15 acres and measures approximately 1,300 feet north to south and 440 feet east to west and is north of State Highway 305. The south property (252601-2-047-2007) is about 0.03 acres and measures approximately 90 feet north to south and 15 feet east-to-west (County, 2025). The Site is accessed on the east side from Crystallia Court NE. The Site contains an unpaved trail system constructed with cut slopes and graded paths (Photograph 1).

# 2.2 Topography

The Site generally slopes down from the northeast to the southwest, with an overall change in elevation of about 240 feet and an average inclination of 16 percent (9 degrees). A ravine drainage runs from north to south on the west side of the Site, with the western slopes of the drainage measuring about 100 feet high with a measured inclination of 35 degrees (70 percent), and eastern slope measuring about 100 feet high with a measured inclination of about 25 degrees (46 percent). The Site contains several smaller slopes that are oriented roughly northeast to southwest.

### 2.3 Drainage

We observed areas of standing water in the ravine drainage along the west side of the Site, and areas of very saturated soils along the southern property boundary (Photograph 2). We noted several 6-inch-diameter, smooth-walled plastic pipes running underneath portions of the trail system that moved water downslope. Surface drainage conditions, as well as groundwater conditions at the Site, will vary with fluctuations in precipitation, Site usage (such as irrigation), and off-Site land use.



**Photograph 1.** Unpaved trail at the Site, view to the east.



**Photograph 2.** Area of standing water in the southwest portion of the Site, north of State Highway 305, view to the north.

# 2.4 Vegetation

The Site is generally vegetated with mature evergreens up to 40 inches diameter at breast height, young to mature alder, fern, and woody underbrush. Limited numbers of evergreens located on the slopes had slight trunk curvature, indicating some soil movement over time (Photograph 3). The central and southern portion of the Site and within the ravine drainage along the west side of the Site is vegetated with young to mature alder, dense understory of blackberry, and woody underbrush (Photograph 4). We observed horsetail in the south portion of the Site, indicating the presence of saturated soils. Within the ravine drainage in the northwest portion of the Site we observed tilted and downed alders.



**Photograph 3.** Vegetation at the Site, view to the south.



**Photograph 4.** Vegetation in the southern portion of the Site, view to the north.

### 3 Subsurface Conditions

A description of the subsurface conditions at the Site is provided in the following sections based on a review of published geologic maps, publicly available well logs near the Site, nearby subsurface explorations by others, our experience with the local geology, and our own subsurface explorations.

# 3.1 Geologic Mapping

The Site is located within the geologic area known as the Puget Lowland, east of Liberty Bay in Poulsbo, Washington. The Puget Lowland is a complex tectonic environment, and an area of subsidence flanked by two mountain ranges—the Cascades to the east, and the Olympics to the west. The sediments within the Puget Lowland result from repeated cycles of glacial and non-glacial deposition and erosion. The most recent, the Vashon Stade of the Fraser Glaciation (about 13,000 to 16,000 years ago), is responsible for most of the present day geologic and topographic conditions. During the Vashon Stade, the Cordilleran Glacier advanced southward into the Puget Lowland, depositing lacustrine and fluvial sediments in front of the glacier. Pre-glacial and proglacial sediments were overridden and consolidated by the advancing glacier, creating dense and hard soil deposits. At the interface between the advance soils and the glacial ice, the Cordilleran Glacier sculpted and smoothed the surface, and then deposited a consolidated basal till. As the glacier retreated northward to British Columbia, it left an unconsolidated sediment veneer over glacially consolidated deposits. Unconsolidated recessional and post-glacial alluvial and mass-wasting soils have since accumulated in various locations across the landscape.

The geologic map indicates the Site is underlain by Quaternary Vashon till, described as a diamict of dense to very dense silt, sand, gravel, cobbles, and boulders that were deposited directly under the glacial ice (Polenz et al. 2013).

Pre-Vashon silt (Qpf) is mapped at the head of the ravine in the higher-elevation northwest corner of the Site. Pre-Vashon silt is described as gray or brown, compact, silty, and clay with some sand and rare dropstones, generally thought to be glaciolacustrine but may include non-glacial deposits. Glaciolacustrine is material deposited in a lake environment; however, it has been directly over-ridden by a glacier causing it to be over consolidated.

Pre-Vashon drift (Qpd) is mapped at the lower-elevation ravine bottom; it is described as a till deposit, similar to the Vashon till but associated with a different, older glacial advance.

Although not mapped, human-placed fill and colluvium could be present at the Site. Fill is human-placed materials that is often found in developed areas and can be highly variable. Fill was likely created when the trail system was constructed. Colluvium is often present on and at the base of steep slopes. Colluvium is generally loose to medium dense soil that mantles the slope surface due to accumulating soil creep, slope wash, and sloughing.

# 3.2 Subsurface Investigation

On January 2 and 3, 2025, Aspect oversaw the advancement of 14 test pits, designated ATP-01 through ATP-14, terminated between 10 and 13 feet below ground surface (bgs). Detailed descriptions of the subsurface conditions and soil characteristics are provided in the exploration logs in Appendix A. The locations of the test pits are shown on Figure 2.

### 3.3 Stratigraphy

Below forest duff and topsoil, we encountered Vashon recessional outwash (Qgo) in test pits in the northeast portion of the Site. Recessional outwash is a fluvial deposit laid down during the retreat of the Vashon-age glacier. The geologic map shows this unit about 2,300 feet northwest, in a lower lying area.

On the remainder of the Site, we encountered pre-Vashon glaciolacustrine deposits with varying degrees of weathering. A geologic map presenting inferred geologic contacts based on our subsurface investigation is presented as Figure 3. A summary table of the units encountered at the respective depths is presented in Table 1 following the descriptions.

### 3.3.1 Topsoil

Topsoil refers to a unit that contains a high percentage of organics. We encountered topsoil at the ground surface in all of the test pits, extending from 0.5 to 1.5 feet bgs. The topsoil consisted of loose<sup>1</sup>, dark brown silt (ML)<sup>2</sup> with sand, abundant wood debris, and roots.

### 3.3.2 Vashon Recessional Outwash

Underlying the topsoil in test pits ATP-05, ATP-08, ATP-09, ATP-11, ATP-12, and ATP-14, Vashon recessional outwash was encountered. Test pits ATP-08, ATP-09, ATP-12, and ATP-14 were terminated in this material, 10 and 13 feet bgs. The recessional outwash consisted of medium dense, moist, gray brown, sand with silt, gravel and cobbles (SP-SM), silty sand with gravel and cobbles (SM), and gravel with sand and cobbles (GP).

### 3.3.3 Pre-Vashon Fines: Glaciolacustrine Deposits

Underlying the Vashon recessional outwash in test pits ATP-05 and ATP-11, glaciolacustrine deposits were encountered 9 and 4 feet bgs, respectively. Underlying topsoil in test pits ATP-01 through ATP-04, ATP-06 and ATP-07, ATP-10, and ATP-13, glaciolacustrine deposits were encountered. We interpreted the glaciolacustrine deposits to be part of the pre-Vashon silt (Qpf), in agreement with geologic mapped material in the ravine in the northwest corner of the Site. The deposit consisted of medium dense to dense, sand with silt (SM) and silt with sand (SM) with varied degrees of weathering.

<sup>&</sup>lt;sup>1</sup> Relative density was assessed at various depth intervals in the explorations qualitatively with a 0.5-inch-diameter, pointed steel T-probe and qualitatively with a dynamic cone penetrometer test (DCPT).

<sup>&</sup>lt;sup>2</sup> Soils were classified per the Unified Soil Classification System (USCS) in general accordance with ASTM International (ASTM) D2488, *Standard Practice for Description and Identification of Soils* (ASTM, 2022).

The upper horizon of the deposit has been highly weathered, underlain by a slightly less weathered horizon, and lastly underlain by a relatively unweathered horizon. The amount of weathering decreases with depth while the density of the material increases. The highly-weathered glaciolacustrine deposits are loose, moist to very moist, brown silt with sand (ML) with iron-oxide staining and few root fragments. The weathered glaciolacustrine deposits are dense, moist, gray brown silt with sand (ML) with 0.1- to 0.2-inch-thick iron-oxide stained sand partings.

The relatively unweathered glaciolacustrine deposits are very dense, blue gray silt with sand (ML) with 0.1- to 0.2-inch-thick sand partings

**Table 1. Geologic Units Encountered** 

| Tubio il Coologio Cimo Elicounicio |                                |                                                         |                                                                 |                                                         |                                                        |                           |                                          |
|------------------------------------|--------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|---------------------------|------------------------------------------|
| Exploration<br>Number              | Depth of Topsoil<br>(feet bgs) | Depth of Vashon<br>Recessional<br>Outwash<br>(feet bgs) | Depth of Highly-<br>Weathered<br>Glaciolacustrine<br>(feet bgs) | Depth of<br>Weathered<br>Glaciolacustrine<br>(feet bgs) | Depth of<br>Glaciolacustrine<br>Deposits<br>(feet bgs) | Total Depth<br>(feet bgs) | Ground Surface<br>Elevation <sup>1</sup> |
| ATP-01                             | 0-1                            | NE                                                      | 1-4                                                             | 4-12                                                    | 12-13                                                  | 13                        | 125                                      |
| ATP-02                             | 0-1                            | NE                                                      | 1-4                                                             | 4-12                                                    | NE                                                     | 12                        | 130                                      |
| ATP-03                             | 0-1.5                          | NE                                                      | 1.5-4                                                           | 4-9                                                     | 9-12.5                                                 | 12.5                      | 180                                      |
| ATP-04                             | 0-1.5                          | NE                                                      | 1.5-5                                                           | 5-10                                                    | NE                                                     | 10                        | 165                                      |
| ATP-05                             | 0-2                            | 2-9                                                     | NE                                                              | 9-12                                                    | 12-13                                                  | 13                        | 160                                      |
| ATP-06                             | 0-3                            | NE                                                      | NE                                                              | 3-5                                                     | 5-13                                                   | 13                        | 180                                      |
| ATP-07                             | 0-1.5                          | NE                                                      | 1.5-4                                                           | 4-10                                                    | 10-11.5                                                | 11.5                      | 195                                      |
| ATP-08                             | 0-1.5                          | 1.5-12                                                  | NE                                                              | NE                                                      | NE                                                     | 12                        | 335                                      |
| ATP-09                             | 0-1.5                          | 1.5-10                                                  | NE                                                              | NE                                                      | NE                                                     | 10                        | 260                                      |
| ATP-10                             | 0-1                            | NE                                                      | NE                                                              | 4-12.5                                                  | NE                                                     | 12.5                      | 240                                      |
| ATP-11                             | 0-1.5                          | 1.5-4                                                   | NE                                                              | 4-8                                                     | 8-13                                                   | 13                        | 210                                      |
| ATP-12                             | 0-1.5                          | 1.5-13                                                  | NE                                                              | NE                                                      | NE                                                     | 13                        | 290                                      |
| ATP-13                             | 0-1                            | NE                                                      | 1-5.5                                                           | 5.5-12                                                  | NE                                                     | 12                        | 265                                      |
| ATP-14                             | 0-1.5                          | 1.5-12                                                  | NE                                                              | NE                                                      | NE                                                     | 12                        | 260                                      |

### Notes:

Elevations from LiDAR (Kitsap County Opsw, 2018). NAVD88 refers to North American Vertical Datum of 1988.
 bgs= below ground surface

### 3.4 Groundwater

We encountered groundwater seepage in test pits ATP-02, ATP-05 to ATP-06, ATP-09 and ATP-14 between 2 and 7 feet bgs, as shown in Table 2 below. We interpreted the observed seepage to be perched groundwater and not representative of a regional groundwater table. A perched groundwater condition occurs when surface water percolates into the shallow subsurface and collects on relatively impermeable materials. In this case, the topsoil and highly-weathered glaciolacustrine units are considered low permeability units, while the glaciolacustrine deposits are essentially impermeable. Sand partings in the upper highly-weathered and weathered glaciolacustrine deposits allow water to move through the upper units and perch on top of the glaciolacustrine deposits.

| Exploration<br>Number | Depth to Groundwater<br>Seepage<br>(feet bgs) | Elevation of<br>Groundwater<br>(feet <sup>1</sup> ) |  |  |  |  |  |
|-----------------------|-----------------------------------------------|-----------------------------------------------------|--|--|--|--|--|
| ATP-02                | 2.5                                           | 126.5                                               |  |  |  |  |  |
| ATP-05                | 2                                             | 140                                                 |  |  |  |  |  |
| ATP-06                | 2                                             | 178                                                 |  |  |  |  |  |
| ATP-09                | 7                                             | 262                                                 |  |  |  |  |  |
| ATP-14                | 2                                             | 253                                                 |  |  |  |  |  |

**Table 2. Groundwater Seepage** 

### Notes:

- Elevations from LiDAR (Kitsap County Opsw, 2018). NAVD88 refers to North American Vertical Datum of 1988.
- Groundwater seepage is not related to the groundwater table, it is representative of a perched groundwater condition.
- 3. Bgs = below ground surface

### 3.5 Laboratory Testing Results

Geotechnical laboratory tests were conducted on select samples to characterize engineering and index properties. Two grain size distributions and three fines content (particles passing the No. 200 sieve) analyses were completed, and the natural moisture contents of these soil samples were also determined and are presented on the test pit logs. The test methodology and results of all the laboratory testing are presented in Appendix B along with a summary table including the geologic unit classification.

### **ASPECT CONSULTING**

Table 3. Summary of Particle Size Analysis Results and Moisture Content

| Exploration<br>Number | Sample Depth<br>(feet bgs) | Percent<br>Gravel | Percent<br>Sand | Percent<br>Fines | Moisture<br>Content<br>(percent) | USCS <sup>2</sup> | Geologic Unit                                       |
|-----------------------|----------------------------|-------------------|-----------------|------------------|----------------------------------|-------------------|-----------------------------------------------------|
| ATP-01                | 2                          | NT¹               | NT              | 75               | 35                               | SM                | Highly<br>weathered<br>glaciolacustrine<br>deposits |
| ATP-03                | 12                         | NT                | NT              | 87               | 27                               | SM                | Glaciolacustrine deposits                           |
| ATP-08                | 4                          | 62.2              | 34.6            | 4.7              | 4.6                              | GP                | Vashon<br>Recessional<br>Outwash                    |
| ATP-09                | 4                          | 0                 | 60.8            | 39.2             | 30.2                             | SM                | Vashon<br>Recessional<br>Outwash                    |
| ATP-10                | 10                         | NT                | NT              | 85               | 25.6                             | SM                | Weathered<br>Glaciolacustrine<br>deposits           |

### Notes:

- 1. NT Not tested

- SM Silty sand
   GP Clean gravel
   USCS Unified Soils Classification System

# 4 Geologic Hazard and Associated Design Considerations

The following sections describe the mapped and observed geologic hazards at the Site and the design considerations associated with those hazards.

### 4.1 Seismic Hazards

The Site is located within the Puget Lowland physiographic province, an area of active seismicity that is subject to earthquakes on shallow crustal faults and deeper subduction zone earthquakes. The Site area lies about 7 miles northwest of the Seattle fault zone, which consists of shallow crustal tectonic structures that are considered active (evidence for movement within the Holocene [since about 15,000 years ago]) and is believed to be capable of producing earthquakes of magnitude 7.3 or greater. The recurrence interval of earthquakes on this fault zone is believed to be on the order of 1,000 years or more. The most recent large earthquake on the Seattle fault occurred about 1,100 years ago (Pratt et al., 2015). There are also several other shallow crustal faults in the region capable of producing earthquakes and strong ground shaking.

The Site also lies within the zone of strong ground shaking from earthquakes associated with the Cascadia Subduction Zone (CSZ). Subduction zone earthquakes occur due to rupture between the subducting oceanic plate and the overlying continental plate. The CSZ can produce earthquakes up to magnitude 9.3 and the recurrence interval is thought to be on the order of about 500 years. A recent study estimates the most recent subduction zone earthquake occurred around 1700 (Atwater et al., 2015).

Deep intraslab earthquakes, which occur from tensional rupture of the sinking oceanic plate, are also associated with the CSZ. An example of this type of seismicity is the 2001 Nisqually earthquake. Deep intraslab earthquakes typically are magnitude 7.5 or less and occur approximately every 10 to 30 years.

The following sections present descriptions of seismic design considerations for the Project.

### 4.1.1 Ground Response

Seismic design of the planned residences will likely be in accordance with the 2018 International Building Code (ICC, 2018), which references the American Society of Civil Engineers (ASCE) Standard ASCE/SEI 7-16, Minimum Design Loads for Buildings and Other Structures (ASCE, 2017) for seismic design. Supplements 1, 2, and 3 to ASCE/SEI 7-16 (ASCE, 2018; ASCE, 2021a and ASCE, 2021b) should be referenced where applicable per Washington State Building Code Council Emergency Rule WSR 22-11-010 (WSR 22-11-010; WA Building Code, 2022). In accordance with these codes, the seismic design will consider a "Maximum Considered Earthquake" (MCE) ground motion with a 2 percent probability of exceedance in 50 years, or a return period of 2,475 years.

The effects of Site-specific subsurface conditions on the MCE ground motion at the ground surface are determined based on the "Site Class." The Site Class can be correlated

to the average standard penetration resistance (N-value), average shear wave velocity, or average undrained strength (for fine-grained soils) in the upper 100 feet of the soil profile. Based on density of the glaciolacustrine deposits, we conclude the soil profile for the residences gaining support from this deposit can be classified as Site Class C (Very Dense Soil and Soft Rock).

The spectral response acceleration parameters adjusted for Site Class C in accordance with the 2018 IBC and ASCE/SEI 7-16 and its supplements are presented in Table 4 for the MCE.

**Table 4. Seismic Design Parameters** 

| Design Parameter                                                | Recommended Value                    |
|-----------------------------------------------------------------|--------------------------------------|
| Site Class                                                      | C – Very Dense Soil<br>and Soft Rock |
| Peak Ground Acceleration (PGA)                                  | 0.576g <sup>(1)</sup>                |
| Short Period Spectral Acceleration (S <sub>s</sub> )            | 1.374g                               |
| 1-Second Period Spectral Acceleration (S <sub>1</sub> )         | 0.485g                               |
| Site Coefficient (Fa)                                           | 1.200                                |
| Site Coefficient (F <sub>v</sub> )                              | 1.500(2)                             |
| Design Short Period Spectral Acceleration (S <sub>DS</sub> )    | 1.099g                               |
| Design 1-Second Period Spectral Acceleration (S <sub>D1</sub> ) | 0.485g                               |

### Notes:

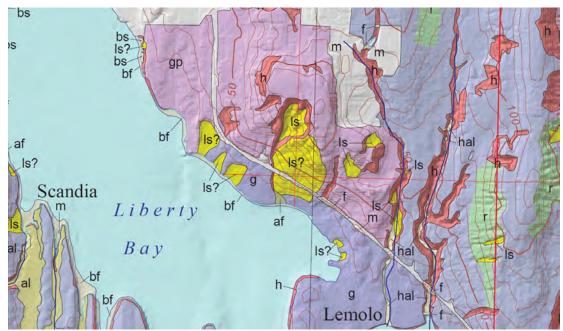
- 1. g = gravitational force.
- Based on the latitude and longitude of the Site: 47.724333°N, 122.625457°W, World Geodetic System 1984 (WGS84).
- 3. The risk category used was II, residential use. Based on the ASCE online hazard tool (ASCE, 2025).

### 4.1.2 Surficial Ground Rupture

A trace of an east-west trending thrust fault zone (Seattle fault zone) projects through the middle of Bainbridge Island, with the nearest known active fault trace (an unnamed fault) located approximately 6.7 miles south of the Site (USGS, 2010). Due to the suspected long recurrence interval and the proximity of the Site to the mapped fault trace, the potential for surficial ground rupture at the Site is considered low during the expected life of the Project and is not a design consideration.

### 4.1.3 Liquefaction

Liquefaction occurs when loose, saturated, and relatively cohesionless soil deposits temporarily lose strength from earthquake shaking. The primary factors controlling the onset of liquefaction include intensity and duration of strong ground motion, characteristics of subsurface soil, *in situ* stress conditions, and the depth to groundwater.


The pre-Vashon deposits underlying the Site are fine-grained and glacially over-ridden; therefore, not susceptible to soil liquefaction. Liquefaction is not a design consideration for the Project.

### 4.2 Landslide Hazards

Two types of landslides are common on similar inland slopes: deep-seated rotational landslides and surficial landslides (Varnes, 1978). These types of landslides are described in further detail in the following subsections. Landslides may be triggered by natural causes such as precipitation, or an earthquake, or by man-made features, such as broken water pipes or improperly managed stormwater flow.

The results of our review of publicly available resources are as follows:

- The Site is mapped as "Stable," and described as slopes that generally rise less than 15 percent in grade and are underlain by stable material (Ecology, 1979).
- Analysis using LiDAR maps did not identify this slope as a landslide (McKenna, et al., 2008).
- The geomorphic map indicates the Site may be a landslide (ls?), meaning it may be a surface of a deep-seated landslide as indicated by uphill scarps, bulbous toes and a position in hillslope hollows (Graphic 2 below; Haugerud, 2009).
- Aspect reviewed the newest publicly available LiDAR data for the Site and surrounding area (DNR, 2018), which shows bowl-shaped topography and hummocky terrain in the northwest portion of the Site, which may indicate a historic landslide in the ravine but lacks the surface roughness to indicate recent slide activity southeast of this area on the Site.
- We reviewed coastal aerial photographs (Ecology, 2025) and aerial photographs (Google, 2025 and NETR, 2025) of the Site area from 1951 through 2024 and did not observe any loss of vegetation at the Site that would suggest recent slope movement.



**Graphic 2**.Geomorphic Map Indicating a Possible Deep-Seated, Rotational Landslide (Haugerud, 2009)

### 4.2.1 Deep Seated Rotational Landslides

Rotational landslides consist of deep-seated failures that typically involve slip along a curved shear plane. Rotational landslides may transport large masses of semi-intact soil downslope, resulting in alternating steep headscarps along the upper portion of the failure plane, with more gently sloping benches composed of displaced soil.

The north- and northwest-facing slopes of the ravine in the northwest portion of the Site have indicators of slope movement, including bowl-shaped topography, hummocky terrain, and tilted and downed trees. If these are landslide areas, the failures would occur to the north and northwest, at least 100 feet from the area of planned development. It is our opinion a 100-foot setback distance from the top of the slope will be adequate for the planned development.

#### 4.2.2 Surficial Landslides

Surficial landslides are also commonly referred to as shallow flows or colluvial landslides. They consist of relatively shallow failures that typically involve sliding of the loose colluvial soil and overlying vegetation that typically mantle steep slopes. Surficial landslides are typically triggered by a significant increase in the moisture content within the upper soil layer of a slope and commonly result from periods of extended or heavy precipitation, groundwater seepage, or concentrated surface water discharge onto a slope.

Surficial landslides can also occur over time in a process called 'creep,' in which surficial soils slowly move downslope. Surface creep is typically evidenced by curvatures in shade-intolerant trees on the slope. Shallow flows occur within the upper several feet of a slope and typically do not extensively affect the deep-seated or overall stability of a slope.

We observed few evergreens with slight trunk curvature on the Site slopes, which may indicate surface creep. Surficial failures along the Site slope would likely be limited to the outer weathered soils and would not affect the overall slope stability.

#### 4.3 Erosion Hazards

The County maps an erosion hazard within the ravine drainage in the northwestern portion of the Site. Erosion hazards indicate areas where accelerated erosion may occur based on factors including soil type, condition and steepness of slope, proximity to shoreline, and vegetative cover. The erosion risk increases on sloped areas, whether natural or excavated during construction.

Based on our observation of the Site and subsurface conditions, it is our opinion that the erosion hazard at the Site is high but can be adequately managed with standard temporary erosion and sedimentation control (TESC) and best management practices (BMPs) during construction. After construction, permanent erosion control methods, including revegetating the Site with native vegetation, can be implemented.

### 5 Conclusions and Recommendations

From our geotechnical investigation, we conclude that the Site is suitable for the proposed residential development, provided the recommendations contained herein are incorporated into the Project design and construction.

Based on current Project plans, site development will involve approximately 110,000 cubic yards of cut and 148,380 cubic yards of fill (ESM, 2025). A qualified and highly experienced earthworks Contractor will be needed for the movement of the soil throughout the Project.

# 5.1 Geologically Hazardous Area Considerations

Four geologic hazards are mapped on and within the area of influence of the Site including: high landslide hazard, moderate landslide hazards, moderate erosion hazards, and a moderate seismic hazard (Graphic 1). The high landslide hazard, moderate erosion hazard, and the moderate seismic hazard are all located in the northwest corner of the Site, in a ravine area with a mapped non-fish habitat watercourse at the base. No development is planned on or within 100 feet of these mapped hazards. Based on our data review, reconnaissance, subsurface explorations, and our understanding of the Project, no additional setbacks are recommended.

A limited area of moderate landslide hazard, defined as slopes between 15 to 30 percent, are mapped near the southeast corner of the Site. We do not recommend a setback from this area.

### 5.2 Foundations

Based on the results of our subsurface explorations, shallow foundations or spread footings may be used for building support. Bearing surfaces for the footings should be prepared as described in Section 6.2, Site Preparation. Foundations should be placed on medium dense or better native soil, generally located 2 to 4 feet bgs.

#### 5.2.1 Shallow Foundations

For shallow foundations bearing on medium dense or better, native, relatively undisturbed, and suitably prepared Vashon recessional outwash, weathered glaciolacustrine, and unweathered glaciolacustrine deposits, we recommend an allowable foundation bearing pressure of 2,500 pounds per square foot (psf) be utilized for design purposes, including both dead and live loads for the planned structures. This same bearing pressure can be used for structural fill compacted to a minimum of 95 percent maximum dry density (MDD; ASTM D1557; ASTM, 2022) This value may be increased by one-third (to 3,300 psf) for short-term wind or seismic loading. Perimeter footings should be buried at least 18 inches into the surrounding soil for frost protection; interior footings require only 12 inches burial below adjacent interior finished grade. No footing should be founded in or above yielding/loose or organic soils.

Assuming construction is accomplished as recommended above, we estimate total settlement of spread foundations of less than about 1 inch and differential settlement between two adjacent load-bearing components supported on competent soils of less than

0.5 inches for the anticipated foundation loads. We anticipate that most of the estimated settlement will occur during construction, effective immediately after loads are applied.

Wind, earthquakes, and unbalanced earth loads will subject the planned residence to lateral forces. Lateral forces on a structure will be resisted by a combination of sliding resistance of its base or footing on the underlying soil and passive earth pressure against the buried portions of the structures.

An allowable coefficient of friction of 0.35 may be assumed along the interface between the base of the footing and subgrade soils. An allowable passive earth pressure of 400 pounds per cubic foot (pcf) may be assumed for soils adjacent to footings or other belowgrade elements and accounting for nearby sloping ground conditions. The upper 1 foot of passive resistance should be neglected in design. The recommended coefficient of friction and passive pressure values include a factor of safety of 1.5 to limit deflection.

### 5.2.2 Slab-On-Grade Support

Slab-on-grade subgrade preparation should be completed in the same manner as shallow foundations described above in Section 5.2 (for foundations) except for interior slabs-on-grade beneath enclosed heated/air-conditioned interior spaces (such as those covered with flooring and carpet).

For interior slabs-on-grade, we recommend the uppermost 6 inches of the subgrade consist of compacted capillary break material (in lieu of 6 inches of crushed surfacing base course [CSBC]) to provide uniform support and moisture control. The capillary break material should consist of free-draining, clean, fine gravel, and coarse sand with a maximum particle size of about 1 inch and less than 3 percent material passing the U.S. No. 200 sieve by weight (fines). Angular material manufactured by crushing is preferred over rounded material such as bank run sand and gravel, to provide a subgrade surface that is not easily disturbed by workers laying steel rebar and concrete formwork. The capillary break material should be compacted to a relatively firm and unyielding condition and evaluated by Aspect prior to placement of steel rebar and formwork.

For building areas where moisture intrusion would be detrimental to the interior finished space (such as air-conditioned office areas that may be covered with flooring), consideration should be given to placement of a moisture protection barrier over the capillary break. Detailed design and performance issues with respect to moisture intrusion control as it relates to the interior environment of the structure are beyond the expertise of Aspect. Moisture protection barriers are specifically for moisture control and should not be confused with vapor barriers required for soil gas mitigation associated with naturally occurring gases (radon, methane) or gases related to environmental contamination (hydrocarbons, solvents, oils, volatile organic compounds). An environmental engineer and building envelope specialist or contractor should be consulted to address these issues, as needed.

For slabs-on-grade designed as a beam on elastic subgrade, we recommend using an initial vertical modulus (Kv1) of 200 pounds per cubic inch (pci) if bearing on the sequence of subgrade materials described above. The Kv1 value is appropriate for a 1-foot by 1-foot slab and needs to be adjusted based on the actual width (B) of the slab to a design vertical modulus (Ks) using the following equation below:

 $K_s = K_{v1}(B+1)^2/(4B^2), \label{eq:Ks}$  where B=slab width (in feet).

### 5.3 Wall Considerations

Low retaining walls, up to 10 feet in height, may be incorporated in the Project design to accommodate grade differentials across the Site. They may be incorporated as basement walls, stepped foundations, or retaining walls unassociated with a building.

Yielding walls, such as cantilever retaining walls, should be designed using a lateral earth pressure based on an equivalent fluid having a unit weight of 35 pcf, plus 1 pcf for each degree of backslope inclination. Nonyielding or restrained walls should be designed for an equivalent fluid weight of 55 pcf plus 1pcf for each degree of backslope inclination.

Walls should be backfilled with freely-draining sand and gravel and equipped with a footing drain to assure that hydrostatic pressures do not develop. Free-draining wall backfill material that meets the gradation requirements described in Section 9-03.12(2) of the Washington State Department of Transportation (WSDOT) Standard Specifications for Gravel Backfill for Walls (WSDOT, 2025), should be specified.

Earthquake shaking will subject retaining walls to a temporary additional earth pressure. We estimated the lateral seismic soil pressure increment using the Mononobe-Okabe method, with consideration of the possible backfill soil properties and MCE. We recommend an average seismic soil pressure increment of 10H (where H is the height of the wall) represented by a uniform rectangular pressure along the height of the wall.

For exterior Site retaining walls that are separate from new residence buildings, not more than 8 feet tall, and which are set back by at least 10 feet from a habitable structure, it is not necessary to design for incremental additional seismic soil pressure.

Over-compaction of the backfill behind walls should be avoided. In this regard, we recommend compacting the backfill to about 90 percent of the MDD (ASTM D1557; ASTM, 2022). Heavy compactors and large pieces of construction equipment should not operate within 5 feet of any embedded wall to avoid the buildup of excessive lateral pressures. Compaction close to the walls should be accomplished using hand-operated vibratory plate compactors.

Lateral forces that may be induced on the wall due to other surcharge loads should be considered by the structural engineer.

# **5.4 Stormwater Drainage Considerations**

The presence of relatively impermeable glaciolacustrine deposits combined with our observations of surface water on the west side of the Site, concentrated stormwater infiltration is infeasible at the Site. We recommend stormwater management be accomplished using low impact development (LID) methods combined with conventional methods, including catch basins and storm drainpipes that discharge into an appropriate system. LID methods, such as small raingardens, bioswales, and dispersion, are feasible provided the systems incorporate underdrains and/or overflow redundancy to account for the low permeability and low-infiltration capacity of the Site soils.

Based on the current plans, a stormwater facility is located at the base of the Site, along the southern end near State Highway 305. This will allow all stormwater collections to gravity flow to the large facility. One test pit, ATP-02, was excavated near the west end of the facility and encountered 1 foot of topsoil underlain by about 4 feet of loose, silty with sand (ML), high-weathered, glaciolacustrine deposits underlain by about 8 feet of dense, silty with sand (ML), weathered glaciolacustrine deposits. Groundwater seepage was observed 2.5 feet bgs.

### 5.4.1 Foundation and Wall Drainage

Given the presence of designated wetlands in the low-lying ravine area in the northwest area of the Site, the sloping topography, and the presence of essentially impervious glacial till and glaciolacustrine deposits at the Site, foundation and wall drainage will be crucial.

The outside edges of all perimeter footings, and the upslope sides of all walls, should be provided with a drainage system consisting of 4-inch-diameter, perforated, rigid plastic pipe embedded in a clean, free-draining sand and gravel meeting the requirements of Section 9-03.12(4) of the WSDOT Standard Specifications for Gravel Backfill for Drains (WSDOT, 2025). The drainpipe and surrounding drain rock should be wrapped in filter fabric to minimize the potential for clogging and/or ground loss due to piping. A washed rock drain curtain at least 1-foot-thick should extend from the footing continuously upward to within 1 foot of the ground surface. A layer of low permeability soils should be used on the upper foot to reduce potential for surface water to enter these footing drains. The foundation drainage system should tie in with the permanent wall drainage systems and under-slab drainage system, if needed. The footing drains should include cleanouts to allow periodic maintenance and inspection.

Final grades around the proposed structures should be sloped such that surface water drains away from the structures. Water from hard surfaces should be collected and diverted to the stormwater outfall system. Roof drain downspouts should not be connected to the foundation drains and under-slab drains, in order to reduce the potential for clogging and flooding foundation drains.

### 6 Construction Considerations

Based on the explorations performed and our understanding of the Project, it is our opinion that the planned excavations can be completed with standard construction equipment. The topsoil and glaciolacustrine deposits contain a significant percentage of fines, making them moisture sensitive and subject to disturbance when wet. The topsoil contains significant amounts of organics, making it unsuitable for reuse as structural fill. Excavations of topsoil should be exported from the Site or used as landscaping fill.

The Vashon recessional outwash material encountered in the northern portion of the Site may be used for structural fill, as long as the density requirements are achieved. The contractor should anticipate the presence of potential obstructions, including possible cobbles and boulders.

Discussions about ways to reuse the glaciolacustrine deposits occurred at the time this report was prepared. An experienced Contractor would be required to successfully reuse the material and cement or kiln dust would likely be needed to treat the material if the soil moisture content were too high.

Fill placement and compaction could only be completed during the dry, summer months. If wet weather occurred, construction would be required to stop until dry conditions returned. A sheepsfoot roller would be used for compaction and benching on sloped areas would be required. An Aspect/Geosyntec representative would be required to observe the Contractors means and methods. A separate company would be required for frequent, inplace density testing.

We recommend that earthwork activities be specified in accordance with the following WSDOT Standard Specifications, except where specifically addressed in this report (WSDOT, 2025). Appropriate erosion control measures should be in accordance with Section 1-07.15, Temporary Water Pollution/Erosion Control, and should be implemented prior to beginning earthwork activities.

### 6.1 Wet Weather Earthwork

Earthwork is typically most economical when performed under dry weather conditions. If earthwork is to be performed or fill is to be placed in wet weather or under wet conditions when soil moisture content is above optimum and difficult to control, the following recommendations apply:

- Earthwork should be performed in small areas to minimize exposure.
- Excavation or removal of unsuitable soils should be followed promptly by the placement and compaction of the specified structural fill.
- The size, type, and access of construction equipment used may have to be limited to prevent soil disturbance.
- The ground surface within the construction area should be graded to promote runoff of surface water away from slopes and to prevent water ponding.

- The ground surface within the construction area should be properly covered and under no circumstances should be left uncompacted and/or exposed to moisture.
- Soils that become too wet for compaction should be removed and replaced with specified structural fill.
- Excavation and placement of fill should be observed by Aspect/Geosyntec to verify that all unsuitable materials are removed prior to placement, compaction requirements are met, and Site drainage is appropriate.
- Erosion and sedimentation control should be implemented in accordance with City requirements and BMPs.

# 6.2 Site Preparation

Site preparation within the proposed construction footprint should include removal of topsoil containing roots, organics, debris, and any other deleterious material. All soil with significant root debris, including the highly weathered glaciolacustrine deposits, should be removed from the planned foundations areas.

#### 6.3 Structural Fill

Soils placed beneath or around foundations, walls, utilities, slabs-on-grade, or below pavements should be considered structural fill. For these fill areas, we provide the following recommendations:

- Structural fill to be used below foundations should consist of material meeting the requirements for Class A Gravel Backfill for Foundations, as described in Section 9-03.12(1)A of the WSDOT *Standard Specifications* (WSDOT, 2025). If desired, lean concrete or controlled density fill (CDF) can also be used as structural fill under foundations. If lean concrete is used, a 2-sack mix is recommended.
- The uppermost 6 inches of structural fill beneath slabs-on-grade should consist of capillary break consisting of free-draining, clean, fine gravel and coarse sand with a maximum particle size of 1 inch and less than 3 percent material passing the U.S. No. 200 sieve by weight (fines).
- Drain rock to surround footing and under-slab drainage pipes should consist of material meeting the requirements of Gravel Backfill for Drains as specified in Section 9-03.12(4) of the WSDOT *Standard Specifications*.
- Structural fill placed within 12 inches (behind) basement walls (if not cast directly against shoring) should consist of free-draining sand and gravel meeting the requirements for Gravel Backfill for Walls per WSDOT *Standard Specifications* Section 9-03.12(2), or similar locally available material approved by Aspect/Geosyntec.
- Structural fill to be used for general excavation backfill outside of the areas where
  materials are specified above should consist of material meeting the requirements
  for Gravel Borrow per WSDOT Standard Specifications Section 9-03.14(1).

#### 6.3.1 Reuse of On-Site Soils as Structural Fill

The suitability of excavated Site soils for use as structural fill depends on the gradation and moisture content of the soil when it is placed. As the amount of fines (the portion passing through a No. 200 sieve) increases, the soil becomes increasingly sensitive to small changes in moisture content and adequate compaction becomes more difficult to achieve. Soil containing more than about 5 percent fines typically cannot be consistently compacted to a dense, nonyielding condition when the moisture content is greater than about 3 to 4 percent above or below optimum. Kiln dust and cement can be added to soil with high moisture content to lower the moisture and to achieve the required compaction specifications. A pugmill mixing operation will need to be established to uniformly distribute the cement or kiln dust into the on-Site soil. An earthworks Contractor with experience in soil amendment will be needed if this is contemplated.

Aspect/Geosyntec and a separate company will be required for placement observations and in-place density testing. The amount of cement or kiln dust to add to the soil will be determined at the time of construction based on soil type, moisture content, and the contractor's method(s) of mixing. Soil considered for use as structural fill must also be free of organic and other compressible materials.

The Vashon recessional outwash deposits may be used as structural fill provided the materials are screened to ensure they are relatively free of organics, cobbles, boulders, and other deleterious debris. Based on our explorations, the material is over optimum moisture content and would need to be moisture-conditioned in order to achieve adequate compaction.

### 6.3.2 Compaction

In general, suitable structural fill material for the Project is fill placed within 3 percent of its optimum moisture content per ASTM International (ASTM) Standard D1557 (modified Proctor test) that does not contain deleterious materials or particles larger than 3 inches in diameter (ASTM, 2022). Structural fill material should be compacted to a minimum of 95 percent of the MDD based on ASTM D1577. Structural fill adjacent to a wall should be compacted to a minimum of 90 percent of the MDD based on ASTM D1557.

The procedure to achieve the specified minimum relative compaction depends on the size and type of compacting equipment, the number of passes, thickness of the layer being compacted, and certain soil properties. When size of the excavation restricts the use of heavy equipment, smaller equipment can be used, but the soil must be placed in thin enough lifts to achieve the required compaction. A sufficient number of in-place density tests should be performed as the fill is placed to verify the required relative compaction is being achieved. The frequency of the in-place density testing can be determined at the time of construction when more details of the Project grading and backfilling plans are available and the Contractor has been selected.

Generally, loosely compacted soils are a result of poor construction technique or improper moisture content. Soils with a high percentage of silt or clay are particularly susceptible to becoming too wet, and coarse-grained materials easily become too dry, for proper compaction. Silty or clayey soils with a moisture content too high for adequate compaction should be dried, as necessary, or moisture conditioned by mixing with drier

materials, or other methods. A sheepsfoot roller should be used with materials containing high percentages of silt and clay (materials passing the 200 sieve). A particle-size analysis, natural moisture content, and a proctor should be completed on the materials requiring compaction and density testing.

# 6.4 Temporary and Permanent Slopes

Maintenance of safe working conditions, including temporary excavation stability, is the sole responsibility of the contractor. All temporary cuts exceeding 4 feet in height that are not protected by trench boxes, or otherwise shored, should be sloped in accordance with Part N of Washington Administrative Code (WAC) 296-155 (WSL, 2019), as shown in Table 5 below.

| Table 5. Temporar | y Excavation Cut Slo | ope Recommendations |
|-------------------|----------------------|---------------------|
|-------------------|----------------------|---------------------|

| Soil Unit                                                                                                       | WAC Soil<br>Classification | Maximum<br>Temporary Slope | Maximum<br>Height (ft) |
|-----------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|------------------------|
| Topsoil, Fill                                                                                                   | Type C                     | 1.5H:1V <sup>2</sup>       | 12                     |
| Vashon Recessional Outwash, Highly-Weathered Glaciolacustrine Deposits, and Weathered Glaciolacustrine Deposits | Туре С                     | 1.5H:1V <sup>2</sup>       | 12                     |
| Glaciolacustrine Deposits                                                                                       | Type A                     | 0.75H:1V                   | 20                     |

#### Notes:

1. H:V = Horizontal to Vertical

With time and the presence of seepage and/or precipitation, the stability of temporary unsupported cut slopes can be significantly reduced. We recommend planning the construction schedule to have excavation occur during the summer months and to minimize the amount of time that the temporary slopes will be unsupported during construction. The contractor should monitor the stability of the temporary cut slopes and adjust the construction schedule and slope inclination accordingly. Vibrations created by traffic and construction equipment may cause caving and raveling of the face of the temporary slopes. At no time should soil stockpiles, equipment, and other loads be placed immediately adjacent to an excavation.

The cut-slope inclinations provided here are for planning purposes only and are applicable to excavations without inflowing perched groundwater or runoff. The contractor shall be responsible for safe working conditions at the Site.

Permanent slopes for the Project should be no steeper than 2H:1V (horizontal:vertical).

# 7 Additional Project Design and Construction Monitoring

At the time of this report, site grading, structural plans, and construction methods were not finalized, and the recommendations presented herein are preliminary. We are available to provide additional geotechnical consultation as the Project design develops, and possibly changes, from that upon which this report is based. Additional explorations, testing, and assessments may be needed as the Project plans develop. The information and recommendations contained herein should be brought to the attention of the appropriate design team personnel and incorporated into the Project plans and specifications.

We recommend a pre-construction meeting be organized at the start of construction including you, your contractor, and Aspect/Geosyntec. During this meeting, we will understand the goals and schedule to be upheld during construction. We will also discuss effective lines of communication. The integrity of the Project and the overall Site stability depends on proper site preparation and construction procedures. In addition, engineering decisions may have to be made in the field in the event that variations in subsurface conditions become apparent.

### 8 References

- American Society of Civil Engineers (ASCE), 2018, Supplement 1, Minimum Design Loads for Buildings and Other Structures, ASCE Standard 7-16, effective December 12, 2018.
- American Society of Civil Engineers (ASCE), 2021a, Supplement 2, Minimum Design Loads for Buildings and Other Structures, ASCE Standard 7-16, effective October 14, 2021.
- American Society of Civil Engineers (ASCE), 2021b, Supplement 3, Minimum Design Loads for Buildings and Other Structures, ASCE Standard 7-16, effective November 5, 2021.
- American Society of Civil Engineers (ASCE), 2025, ASCE 7 Hazard Tool, https://asce7hazardtool.online/, accessed January 20, 2025.
- ASTM International (ASTM), 2022, Annual Book of ASTM Standards, West Conshohocken, Pennsylvania.
- Atwater, B.F., S. Musumi-Rokkaku, D. Satake, Y. Tsuji, K. Ueda, and D.K. Yamaguci (Atwater et al.), 2015, The orphan tsunami of 1700—Japanese clues to a parent earthquake in North America, U.S. Geological Survey, Professional Paper 1707.
- ESM Consulting Engineers LLC (ESM), 2024, Johnson Feasibility, Prepared for: Montebanc Management, LLC, Job No. 2090-004-022; EN-08, Page 1 of 1, October 18, 2024.
- Google, 2025, Google Earth Pro Program, Years reviewed: 1994, 2004, 2005, 2006, 2007, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2020, 2021, 2022, 2023 and 2024, accessed January 23, 2025.
- Haugerud, R.A., 2009, Preliminary geomorphic map of the Kitsap Peninsula, Washington, USGS, Open-File Report 2009-1033, Version 1.0, Scale 1:36,000.
- International Code Council (ICC), 2018, International Building Code (IBC), Prepared by International Code Council, First Printing August 2017.
- Kitsap County (County), 2025, Kitsap County Parcel Details and Parcel Map Application, https://psearch.kitsapgov.com/pdetails/default.aspx, accessed on January 23, 2025.
- McKenna, J.P., D.J. Lidke, and J.A. Coe (McKenna et al.), 2008, Landslides Mapped from LiDAR Imagery, Kitsap County, Washington: U.S. Department of the Interior, U.S. Geological Survey, Open File Report 2008-1292, Version 1.0.
- Nationwide Environmental Title Research, LLC (NETR), 2025, Historical Aerials, Years reviewed: 1951, 1969, 1981, 1994, 2006, 2009, 2011, 2013, 2015, 2017, 2019 and 2021, https://www.historicaerials.com/, accessed January 23, 2025.

#### **ASPECT CONSULTING**

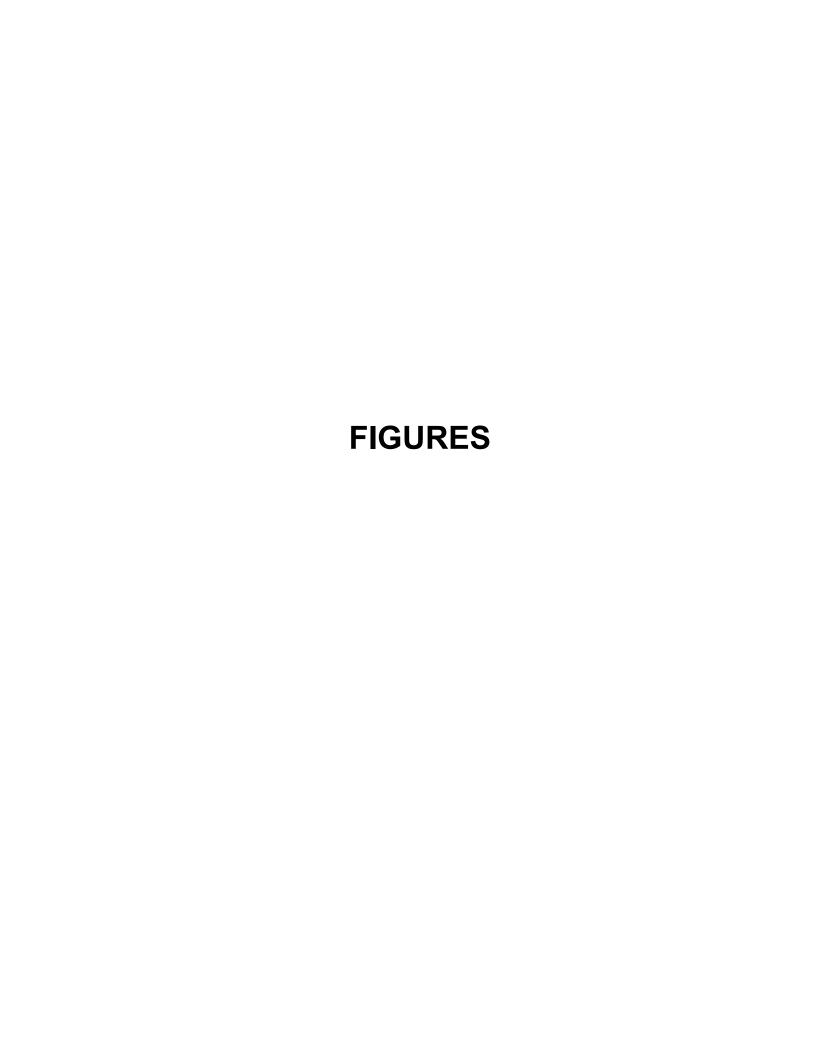
- Polenz, Michael, Petro, G.T., Contreras, T.A., Stone, K.A., Paulin, G.I., and Cokiar, Recep, 2013, Geologic map of the Seabeck and Poulsbo 7.5-minute quadrangles, Kitsap and Jefferson Counties, Washington: Washington Division of Geology and Earth Resources, Map Series 2013-02, scale 1:24,000.
- Pratt, T.L., K.G. Troost, J.K. Odum, and W.J. Stephenson (Pratt et al.), 2015, Kinematics of shallow backthrusts in the Seattle fault zone, Washington State, Geosphere, v. 11, no. 6, p. 1–27, doi:10.1130/GES01179.1.
- U.S. Geological Survey (USGS), 2010, Quaternary fault and fold database for the United States, http://earthquake.usgs.gov/hazards/qfaults/, accessed January 15, 2025.
- Varnes, D.J., 1978, Slope movement types and processes, in Schuster, R.L., and Krizek, R.J., eds., Landslides—Analysis and control: National Research Council, Washington, D.C., Transportation Research Board, Special Report 176, p. 11–33.
- Washington State Building Code Council (WA Building Code), 2022, Emergency Rule WSR 22-11-010, Effective Mar 6, 2022.
- Washington State Department of Ecology (Ecology), 1979, Coastal Zone Atlas of Washington, Shoreline and Coastal Zone Management Program, Volume 10, https://fortress.wa.gov/ecy/coastalatlas/tools/Map.aspx, accessed January 23, 2025.
- Washington State Department of Ecology (Ecology), 2025, Coastal Zone Atlas of Washington, Shoreline Photos from June 10, 1977, May 19, 1992, and July 24, 2016, available at: https://fortress.wa.gov/ecy/coastalatlas/, accessed January 23, 2025.
- Washington State Department of Natural Resources (DNR), 2019, Washington Lidar Portal, Kitsap County Opsw 2018, Olympics South Opsw 2019 DTM hillshade and Puget Lowlands 2005, lidarportal.dnr.wa.gov, accessed January 23, 2025.
- Washington State Department of Transportation (WSDOT), 2025, Standard Specifications for Road, Bridge, and Municipal Construction, M 41-10, 2024.

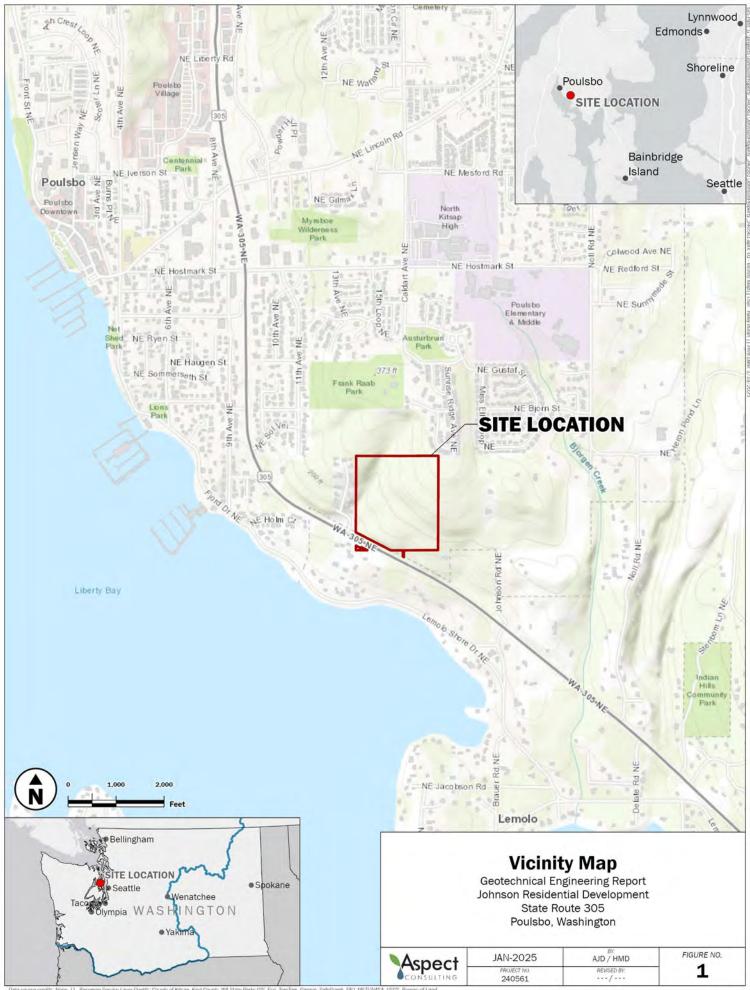
### 9 Limitations

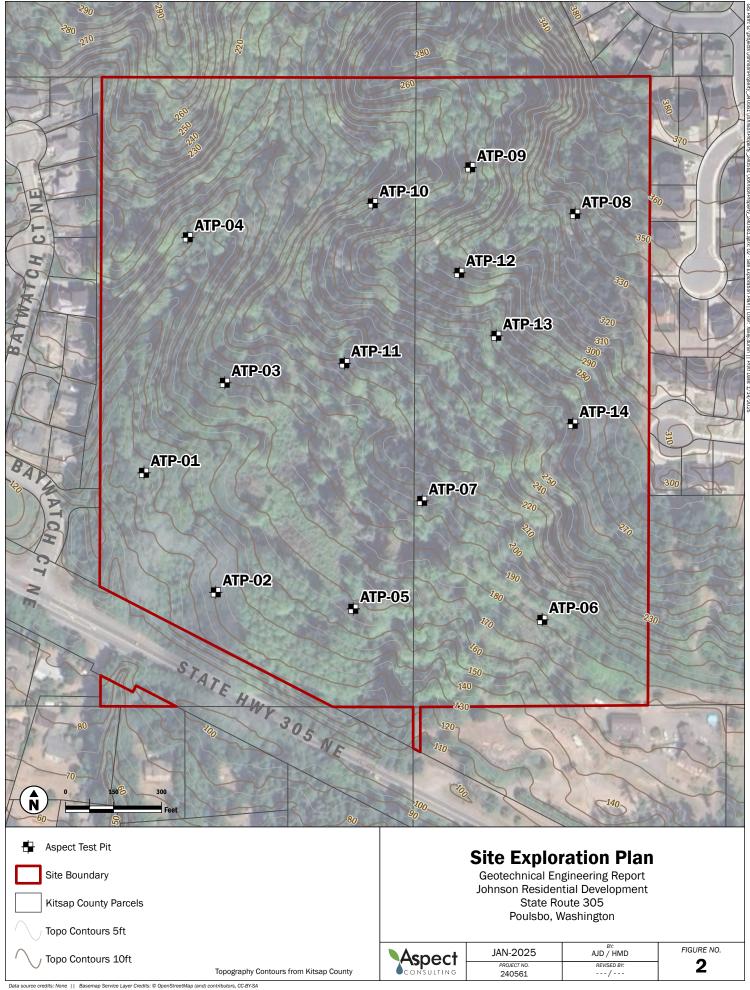
Work for this project was performed for Montebanc Management, LLC (Client), and this report was prepared consistent with recognized standards of professionals in the same locality and involving similar conditions, at the time the work was performed. No other warranty, expressed or implied, is made by Aspect Consulting, a Geosyntec company, (Aspect).

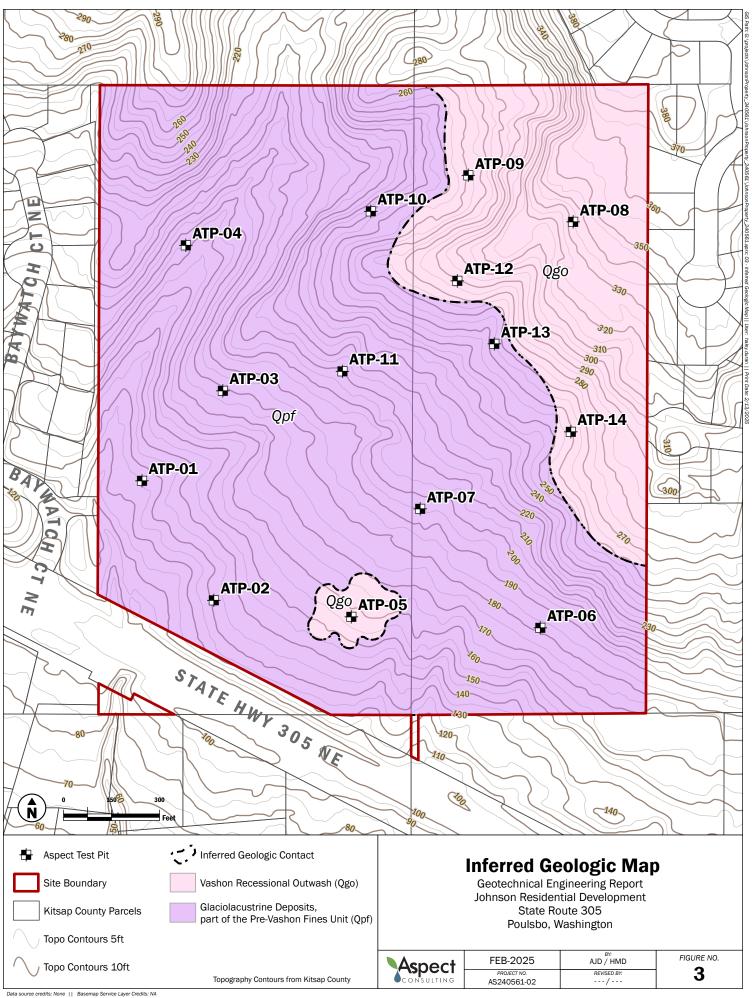
Recommendations presented herein are based on our interpretation of site conditions, geotechnical engineering calculations, and judgment in accordance with our mutually agreed-upon scope of work. Our recommendations are unique and specific to the project, site, and Client. Application of this report for any purpose other than the project should be done only after consultation with Aspect.

Variations may exist between the soil and groundwater conditions reported and those actually underlying the site. The nature and extent of such soil variations may change over time and may not be evident before construction begins. If any soil conditions are encountered at the site that are different from those described in this report, Aspect should be notified immediately to review the applicability of our recommendations.


It is the Client's responsibility to see that all parties to this project, including the designer, contractor, subcontractors, and agents, are made aware of this report in its entirety. At the time of this report, design plans and construction methods have not been finalized, and the recommendations presented herein are based on preliminary project information. If project developments result in changes from the preliminary project information, Aspect should be contacted to determine if our recommendations contained in this report should be revised and/or expanded upon.


The scope of work does not include services related to construction safety precautions. Site safety is typically the responsibility of the contractor, and our recommendations are not intended to direct the contractor's site safety methods, techniques, sequences, or procedures. The scope of our work also does not include the assessment of environmental characteristics, particularly those involving potentially hazardous substances in soil or groundwater.


All reports prepared by Aspect for the Client apply only to the services described in the Agreement(s) with the Client. Any use or reuse by any party other than the Client is at the sole risk of that party, and without liability to Aspect. Aspect's original files/reports shall govern in the event of any dispute regarding the content of electronic documents furnished to others.


Please refer to Appendix C titled "Report Limitations and Guidelines for Use" for additional information governing the use of this report.

We appreciate the opportunity to perform these services. If you have any questions please call Alison J. Dennison, LEG, Senior Engineering Geologist at 206-780-7717.









# **APPENDIX A**

**Subsurface Exploration Logs** 

# **A. Subsurface Explorations**

On January 2 and 3, 2025, Aspect observed the excavation of 14 test pits, ATP-01 through ATP-14. The test pits were excavated by High Meadows Excavating, LLC., an experienced and local excavation contractor, under subcontract to Aspect. Test pits were excavated using a Zaxis 85 USB tracked excavator. An Aspect representative, Chelsea Bush, LG, was present throughout the field exploration program to determine the locations of the explorations, observe the explorations, assist in sampling, and to prepare descriptive logs of each exploration. Samples were obtained from select soil units to aid in the determination of engineering properties of the subsurface materials and laboratory testing. The locations of explorations are shown on Figure 2 and were collected with a Global Positioning System (GPS).

Detailed descriptions of the subsurface conditions encountered in our explorations, as well as the depths where characteristics of the soils changed, are indicated on the logs presented herein. The depths indicated on the log where conditions changed may represent gradational variations between soil types. Soils were described per the Unified Soils Classification System (USCS) in general accordance with the ASTM International Standard Practice for Description and Identification of Soils (ASTM D2488; ASTM, 2022). The depths on the logs where conditions changed may represent gradational variations between soil types and actual transitions may be more gradual. The subsurface conditions depicted are only for the specific date and locations reported, and therefore, are not necessarily representative of other locations and times. A key to the symbols and terms used on the logs is provided in the Exploration Log Key.

The relative density/consistency of the soils was evaluated qualitatively with a 0.5-inch-diameter steel T-probe and observation of digging difficulty. Relative density was quantitatively assessed with Dynamic Cone Penetrometer Testing (DCPT) at various depth intervals within the test pits. The test pits were backfilled with the excavated soils.

The DCPT method involves a 15-pound steel mass falling 20 inches to strike an anvil, which drives a 1.5-inch-diameter, 45-degree cone into the soil. The number of blows required to drive the cone 1.75 inches is considered one data point. The DCPT data has been calibrated with Standard Penetration Test (SPT, ASTM Method D1586) results to provide a more refined estimate of soil relative density and consistency.

The test pits were backfilled with the excavated soils and tamped into place to reduce the amount of settlement.

|                                                                 | ction                                                                  |                 | 2000                                    | GW | Well-graded GRAVEL                                                                                   |
|-----------------------------------------------------------------|------------------------------------------------------------------------|-----------------|-----------------------------------------|----|------------------------------------------------------------------------------------------------------|
|                                                                 | se Fra<br>/e                                                           | ≤5% Fines       |                                         |    | Well-graded GRAVEL WITH SAND                                                                         |
| 200 Sieve                                                       | 0%¹ of Coaı<br>ı No. 4 Siev                                            | ≥ 5%            |                                         | GP | Poorly-graded GRAVEL<br>Poorly-graded GRAVEL WITH SAND                                               |
| ned on No.                                                      | Gravels - More than 50%¹ of Coarse Fraction<br>Retained on No. 4 Sieve | Fines           | 000000000000000000000000000000000000000 | GM | SILTY GRAVEL<br>SILTY GRAVEL WITH SAND                                                               |
| 50%1 Retai                                                      | Gravels - N                                                            | ≥15% Fines      |                                         | GC | CLAYEY GRAVEL<br>CLAYEY GRAVEL WITH SAND                                                             |
| More than                                                       | Fraction                                                               | -ines           |                                         | SW | Well-graded SAND<br>Well-graded SAND WITH GRAVEL                                                     |
| Coarse-Grained Soils - More than 50%1 Retained on No. 200 Sieve | re of Coarse<br>o. 4 Sieve                                             | ≤5% Fines       |                                         | SP | Poorly-graded SAND<br>Poorly-graded SAND WITH GRAVEL                                                 |
| Coarse-Gra                                                      | Sands - $50\%^1$ or More of Coarse Fraction<br>Passes No. 4 Sieve      | Fines           |                                         | SM | SILTY SAND<br>SILTY SAND WITH GRAVEL                                                                 |
|                                                                 | Sands - t                                                              | ≥15% Fines      |                                         | SC | CLAYEY SAND<br>CLAYEY SAND WITH GRAVEL                                                               |
| Sieve                                                           | /S<br>  S<br>  S<br>  S<br>  S<br>  S<br>  S<br>  S<br>  S<br>  S<br>  | 20%             |                                         | ML | SILT<br>SANDY or GRAVELLY SILT<br>SILT WITH SAND<br>SILT WITH GRAVEL                                 |
| re Passes No. 200 Sieve                                         | Silts and Clays                                                        | ווווור דבפס ווו |                                         | CL | LEAN CLAY<br>SANDY or GRAVELLY LEAN CLAY<br>LEAN CLAY WITH SAND<br>LEAN CLAY WITH GRAVEL             |
|                                                                 | S                                                                      | בולמומ          |                                         | OL | ORGANIC SILT<br>SANDY or GRAVELLY ORGANIC SILT<br>ORGANIC SILT WITH SAND<br>ORGANIC SILT WITH GRAVEL |
| ls - 50%1 or                                                    | ys                                                                     | NOIG            |                                         | МН | ELASTIC SILT SANDY OF GRAVELLY ELASTIC SILT ELASTIC SILT WITH SAND ELASTIC SILT WITH GRAVEL          |
| Fine-Grained Soils - 50%1 or Mo                                 | Silts and Clays                                                        |                 |                                         | СН | FAT CLAY<br>SANDY or GRAVELLY FAT CLAY<br>FAT CLAY WITH SAND<br>FAT CLAY WITH GRAVEL                 |
| Fine-                                                           | S                                                                      | בולק<br>מי      |                                         | ОН | ORGANIC CLAY SANDY or GRAVELLY ORGANIC CLAY ORGANIC CLAY WITH SAND ORGANIC CLAY WITH GRAVEL          |
| Highly                                                          | Organic<br>Soils                                                       |                 |                                         | PT | PEAT and other mostly organic soils                                                                  |

"WITH SILT" or "WITH CLAY" means 5 to 15% silt and clay, denoted by a "-" in the group name; e.g., SP-SM • "SILTY" or "CLAYEY" means >15% silt and clay • "WITH SAND" or "WITH GRAVEL" means 15 to 30% sand and gravel. • "SANDY" or "GRAVELLY" means >30% sand and gravel. • "Well-graded" means approximately equal amounts of fine to coarse grain sizes • "Poorly graded" means unequal amounts of grain sizes • Group names separated by "/" means soil contains layers of the two soil types; e.g., SM/ML.

Soils were described and identified in the field in general accordance with the methods described in ASTM D2488. Where indicated in the log, soils were classified using ASTM D2487 or other laboratory tests as appropriate. Refer to the report accompanying these exploration logs for details.

- Estimated or measured percentage by dry weight
   (SPT) Standard Penetration Test (ASTM D1586)
   Determined by SPT, DCPT (ASTM STP399) or other field methods. See report text for details.

| MC<br>PS<br>FC<br>GH<br>AL<br>C<br>Str<br>OC<br>Comp<br>K<br>SG                                      | =  <br>=  <br>=  <br>= (<br>= (<br>= (<br>= (    | Particle<br>Fines C<br>Hydrom<br>Atterbe<br>Consoli<br>Strengt<br>Organic<br>Proctor<br>Hydrau    | neter Test<br>rg Limits<br>dation Test<br>h Test<br>c Content (9                                                    | bution < 0.075 mm  t 6 Loss by Ig ivity Test                                                   |                                         |                                                                      | TECHNIC   | CAL LAB TESTS            |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------|-----------|--------------------------|
|                                                                                                      |                                                  | Organio                                                                                           | Chemical                                                                                                            | s                                                                                              |                                         |                                                                      | СНЕМІС    | CAL LAB TESTS            |
| BTEX<br>TPH-Dx<br>TPH-G<br>VOCs<br>SVOCs<br>PAHs<br>PCBs<br>RCRA8<br>MTCA5<br>PP-13                  | =    <br>= 0  <br>= 0  <br>= 0  <br>= 0  <br>= 0 | Diesel a<br>Gasolin<br>Volatile<br>Semi-Vo<br>Polycyc<br>Polychlo<br>Metals<br>As, Ba,<br>As, Cd, | and Oil-Ran<br>ne-Range Po<br>Organic Co<br>olatile Orga<br>lic Aromati<br>orinated Bi<br>Cd, Cr, Pb,<br>Cr, Hg, Pb | etroleum Hy<br>ompounds<br>inic Compo<br>c Hydrocark<br>phenyls<br>Hg, Se, Ag,<br>(d = dissolv | um F<br>ydrod<br>unds<br>oon (<br>(d =  | Hydrocarbon<br>carbons<br>S<br>Compounds<br>dissolved,<br>t = total) | t = total | )<br>solved, t=total)    |
| PID                                                                                                  | =                                                | Photoic                                                                                           | nization De                                                                                                         | etector                                                                                        |                                         |                                                                      |           | FIELD TESTS              |
| Sheen<br>SPT <sup>2</sup>                                                                            |                                                  |                                                                                                   | en Test<br>rd Penetrat                                                                                              | ion Tost                                                                                       |                                         |                                                                      |           |                          |
| NSPT                                                                                                 |                                                  |                                                                                                   |                                                                                                                     | etration Te                                                                                    | st                                      |                                                                      |           |                          |
| DCPT                                                                                                 | =                                                | Dynami                                                                                            | ic Cone Per                                                                                                         | netration Te                                                                                   | est                                     |                                                                      |           |                          |
| Descripe<br>Boulder<br>Cobbles<br>Coarse S<br>Fine Gra<br>Coarse S<br>Medium<br>Fine Sar<br>Silt and | Grave<br>Gravel<br>Sand<br>Sand                  | =<br>=<br>=<br>=<br>=<br>=<br>d =                                                                 | Larger tha 3 inches t 3 inches t 3/4 inche No. 4 (4.7 No. 10 (2. No. 40 (0.                                         | 00 mm) to                                                                                      | s<br>es<br>4.75<br>lo. 1<br>No.<br>o No | 5 mm)<br>0 (2.00 mm<br>40 (0.425 r<br>5. 200 (0.07                   | nm)       | COMPONENT<br>DEFINITIONS |
| % by We <1 1 to <5 5 to 10                                                                           | =                                                | Subt                                                                                              | race                                                                                                                | % by Weig<br>15 to 25<br>30 to 45<br>>50                                                       | <u>ht</u><br>=<br>=<br>=                |                                                                      |           | ESTIMATED¹ PERCENTAGE    |
| Dry<br>Slightly                                                                                      | Moist                                            | : = P                                                                                             | bsence of                                                                                                           | moisture                                                                                       |                                         | , dry to the t                                                       | ouch      | MOISTURE<br>CONTENT      |

Moist Damp but no visible water Very Moist Water visible but not free draining

Wet Visible free water, usually from below water table

#### **RELATIVE DENSITY** Non-Cohesive or Coarse-Grained Soils

| Density <sup>3</sup> | SPT <sup>2</sup> Blows/Foot | Penetration with 1/2" Diameter Rod |
|----------------------|-----------------------------|------------------------------------|
| Very Loose           | = 0  to  4                  | ≥ 2'                               |
| Loose                | = 5  to  10                 | 1' to 2'                           |
| Medium Dense         | = 11  to  30                | 3" to 1'                           |
| Dense                | = 31  to  50                | 1" to 3"                           |
| Very Dense           | = > 50                      | < 1"                               |

#### **Cohesive or Fine-Grained Soils**

#### **CONSISTENCY**

Manual Test

| Consistency <sup>3</sup> | SPT <sup>2</sup> Blows/Foot |
|--------------------------|-----------------------------|
|--------------------------|-----------------------------|

Very Soft Soft = 0 to 1Penetrated >1" easily by thumb. Extrudes between thumb & fingers. Penetrated 1/4" to 1" easily by thumb. Easily molded. 2 to 4

Medium Stiff = 5 to 8 Penetrated >1/4" with effort by thumb. Molded with strong pressure. = 9 to 15 Stiff Indented ~1/4" with effort by thumb.

Very Stiff = 16 to 30 Indented easily by thumbnail. Hard = > 30 Indented with difficulty by thumbnail.

#### **GEOLOGIC CONTACTS**

Observed and Distinct

Observed and Gradual

Inferred



**Exploration Log Key** 

|                                                                      | Λ.                                                                           | enoct                             |                    | J    | oh         |        |                 |          |                    |           | AS240                                  | 56 <sup>°</sup> | 1     |                                                                                                                            | Geotechnical Exp                                                                                                                                                                                                                                     | oloration Lo                                                                                                                       | g                                                |
|----------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------|--------------------|------|------------|--------|-----------------|----------|--------------------|-----------|----------------------------------------|-----------------|-------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
|                                                                      |                                                                              | spect                             |                    |      |            | -      |                 |          |                    |           | c Location                             |                 |       |                                                                                                                            | Coordinates (Lat,Lon WGS84)                                                                                                                                                                                                                          | Exploration Num                                                                                                                    | iber                                             |
| -                                                                    |                                                                              | ON SULTING<br>Contractor          | Equi               | inmo | ont        | F      | Pouls           | bo, V    | VA, S              | See Fig   | ure 2.<br>mpling Metho                 | nd .            |       |                                                                                                                            | 47.7241, -122.6303 (est)  Ground Surface Elev. (NAVD88)                                                                                                                                                                                              | ATP-0                                                                                                                              | 1                                                |
|                                                                      | High                                                                         | n Meadows                         | '                  | •    |            |        |                 |          |                    | Sai       | , •                                    | iu              |       |                                                                                                                            | , ,                                                                                                                                                                                                                                                  |                                                                                                                                    |                                                  |
|                                                                      |                                                                              | vating, LLC                       | Hitachi Z          |      |            |        |                 |          |                    | Morle Cto | Grab<br>art/Completion                 | n Do            | too   |                                                                                                                            | 125' (est) Top of Casing Elev. (NAVD88)                                                                                                                                                                                                              | Depth to Water (Belo                                                                                                               | (au CC)                                          |
|                                                                      |                                                                              | Operator<br>e Monsaas             | Exploratio<br>Trac |      |            | 1(S)   |                 |          |                    |           | 1/2/2025                               | n Da            | ies   |                                                                                                                            | NA                                                                                                                                                                                                                                                   | No Water Encour                                                                                                                    | ,                                                |
| Depth                                                                | Elev.                                                                        | Exploration N                     | Notes and          | Sai  | mple       | W      | Blow<br>ater Co | /s/foot  | <b>A</b> (%)       | Blows/6   |                                        |                 | ateri |                                                                                                                            | Description                                                                                                                                                                                                                                          | THE TYGEN ENGE                                                                                                                     | Dept                                             |
| (feet)                                                               | (feet)                                                                       | Completion                        | n Details          | Typ  | pe/ID      | 0 10   |                 |          | 40 50              |           |                                        |                 | Type  | :                                                                                                                          |                                                                                                                                                                                                                                                      |                                                                                                                                    | (ft)                                             |
| 1 2 3 3 4 5 5 6 7 7 88 9 9 10 11 12 12 12 12 12 12 12 12 12 12 12 12 | -124<br>-123<br>-122<br>-121<br>-120<br>-119<br>-116<br>-115<br>-114<br>-113 | Backfill excaval one-foot excaval |                    |      | S3 S2 S1   |        |                 | 35       | 40 50              |           | DCPT =3,8,  DCPT =6,18,13 FC,MC FC=75% |                 |       | SILT W non-plas diameter  HII SANDY non-plas diameter  SILT W brown; I 0.2-inch staining  SILT W plasticity sand (S Bottom | GHLY WEATHERED GLACIOL DEPOSITS  / SILT (ML); medium dense, mo stic; fine to medium sand; roots ir; iron-oxide staining.  EATHERED GLACIOLACUSTRI //ITH SAND (ML); medium dense ow plasticity; fine to medium sai in-thick fine sand (SP) partings w | ACUSTRINE ist, light brown; up to 0.5 inches in  NE DEPOSITS e, moist, gray nd; 0.1-to ith iron-oxide  POSITS oist, blue gray; low | 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 |
| 14·                                                                  | 111                                                                          |                                   |                    |      |            |        |                 | 7-       |                    |           |                                        |                 |       |                                                                                                                            |                                                                                                                                                                                                                                                      |                                                                                                                                    | <del>-</del> 14                                  |
| NO INC                                                               |                                                                              |                                   |                    |      |            |        |                 |          |                    |           |                                        |                 |       |                                                                                                                            |                                                                                                                                                                                                                                                      |                                                                                                                                    |                                                  |
| 3                                                                    | Leg                                                                          | gend                              |                    | Ш    | l<br>Plast | ic Lim | it <del> </del> | <u> </u> | <u>l</u><br>.iquid | Limit     | I                                      |                 |       |                                                                                                                            |                                                                                                                                                                                                                                                      |                                                                                                                                    |                                                  |
| Sample                                                               | CORE                                                                         | Grab sample                       |                    |      |            | Water  |                 | No '     | Wate               | er Enco   | untered                                |                 |       | of symbo                                                                                                                   |                                                                                                                                                                                                                                                      | Exploration Log ATP-01 Sheet 1 of 1                                                                                                |                                                  |

|                                 | Λ.              | cnoct                       |                                                                           | Jo          | ohr | nso                  | n Pro                           | pe               | rty - A                      | <b>4S240</b> 5   | 6   | 1             |                                          | Geotechnical Exp                                                                                                                                                                                       | oloration Lo                                   | g             |
|---------------------------------|-----------------|-----------------------------|---------------------------------------------------------------------------|-------------|-----|----------------------|---------------------------------|------------------|------------------------------|------------------|-----|---------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------|
|                                 |                 | SPECT<br>INSULTING          | Fau                                                                       | ipmei       |     | Projec               | t Addres                        | s & Sit          | e <i>Specifi</i><br>See Figi | Location         |     |               |                                          | Coordinates (Lat,Lon WGS84)<br>47.7234, -122.6297 (est)<br>Ground Surface Elev. (NAVD88)                                                                                                               | Exploration Num  ATP-0                         | nber          |
|                                 | High            | Meadows<br>vating, LLC      | Hitachi .                                                                 |             |     | R                    |                                 |                  | Oui                          | Grab             | u   |               |                                          | 130' (est)                                                                                                                                                                                             |                                                |               |
|                                 |                 | Operator                    | Exploration                                                               |             |     |                      |                                 |                  | Work Sta                     | rt/Completion    | Dat | tes           |                                          | Top of Casing Elev. (NAVD88)                                                                                                                                                                           | Depth to Water (Be                             | low GS)       |
|                                 | Dave            | e Monsaas                   | Tra                                                                       | ckho        | e   |                      |                                 |                  |                              | 1/2/2025         |     |               |                                          | NA NA                                                                                                                                                                                                  | 2.5' (Seep)                                    | )             |
|                                 | Elev.<br>(feet) | Exploration N<br>Completion | Notes and<br>n Details                                                    | Sam<br>Type |     | <br>  Wate<br>  0 10 | Blows/foo<br>er Conter<br>20 30 | ıt (%)●          | Blows/6'                     | Tests            |     | ateri<br>Type |                                          | Description                                                                                                                                                                                            | •                                              | Depth<br>(ft) |
| 1 -                             | -129<br>-128    | one-foo<br>tamped           | ed with<br>led material in<br>t-thick lifts and<br>with the<br>or bucket. |             |     |                      |                                 |                  |                              |                  |     |               | non-plas<br>diamete  HI  SILT W non-plas | TOPSOIL /ITH SAND (ML); loose, moist, of stic; fine to medium sand; roots r.  GHLY WEATHERED GLACIOL DEPOSITS /ITH SAND (ML); loose, very mostic; fine to medium sand; trace ots; iron-oxide staining. | up to 1 inch in  ACUSTRINE  bist, light brown; | 1 - 2         |
| 3 -                             | -127            | 1/2/20                      | 025                                                                       |             | -   |                      |                                 |                  | -                            |                  |     |               |                                          | dwater seep at 2.5 feet bgs.                                                                                                                                                                           |                                                | - 3           |
|                                 | -126<br>-125    |                             |                                                                           |             | S1  |                      |                                 |                  |                              | DCPT<br>=12,13,8 |     |               | SILT W                                   | ATHERED GLACIOLACUSTRI /ITH SAND (ML); dense, moist, y; fine to medium sand; trace, fir ded gravel.                                                                                                    | light brown; low                               | - 4<br>- 5    |
| 6 -                             | 124             |                             |                                                                           |             | -   |                      | -  -                            |                  | -                            |                  |     |               |                                          |                                                                                                                                                                                                        |                                                | - 6           |
| 7 -                             | -123            |                             |                                                                           |             |     |                      | _     -                         | _                |                              |                  |     |               |                                          |                                                                                                                                                                                                        |                                                | 7             |
| 7 -                             | -122            |                             |                                                                           |             | -   | -                    | -  -                            | _                |                              |                  |     |               |                                          |                                                                                                                                                                                                        |                                                | - 8           |
| 9 -                             | -121            |                             |                                                                           |             | -   | -                    |                                 | -                |                              |                  |     |               |                                          |                                                                                                                                                                                                        |                                                | <b>-</b> 9    |
| 10-                             | 120             |                             |                                                                           | <b>P</b>    | SS  |                      |                                 |                  |                              |                  |     |               |                                          |                                                                                                                                                                                                        |                                                | -10           |
| 11-                             | 119             |                             |                                                                           |             |     |                      |                                 |                  |                              |                  |     |               |                                          |                                                                                                                                                                                                        |                                                | +11           |
| 12-                             | -118            |                             |                                                                           |             |     |                      |                                 |                  | Ī                            |                  |     |               | Bottom                                   | of exploration at 12 ft. bgs.                                                                                                                                                                          |                                                | 12            |
|                                 |                 |                             |                                                                           |             |     |                      |                                 |                  |                              |                  |     |               | Note: No                                 | o test pit caving observed.                                                                                                                                                                            |                                                |               |
| 13-                             | 117             |                             |                                                                           |             | -   | -                    | - - -                           | -                | -                            |                  |     |               |                                          |                                                                                                                                                                                                        |                                                | 13            |
| 14-                             | -116            |                             |                                                                           |             |     | _                    |                                 | _  -             |                              |                  |     |               |                                          |                                                                                                                                                                                                        |                                                | - 14          |
| 10-<br>11-<br>12-<br>13-<br>14- | 1               | gend<br>Grab sample         |                                                                           | P           |     | Water<br>Level       |                                 | Liquid<br>ater L | Limit<br>evel (Se            | epage)           |     |               | of symbo                                 |                                                                                                                                                                                                        | Explorati<br>Log<br>ATP-02<br>Sheet 1 of 7     | 2             |

|                 | Δ    | tnect                                  |                                                   | J                     | oh            | nso          | on P     | rop                 | erty                 | - /   | AS2405                         | 61  |        |                               | Geotechnical Exp                                                                                                                                                      | oloration Lo                          | g              |
|-----------------|------|----------------------------------------|---------------------------------------------------|-----------------------|---------------|--------------|----------|---------------------|----------------------|-------|--------------------------------|-----|--------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------|
|                 | ١.   | SPECT NASULTING                        |                                                   |                       |               | -            |          |                     | Site Spe<br>A, See I |       | Location                       |     |        |                               | Coordinates (Lat,Lon WGS84)<br>47.7246, -122.6297 (est)                                                                                                               | Exploration Nun                       |                |
|                 |      | ontractor                              | Equ                                               | ipm                   | ent           |              | Juisb    | JO, VV              |                      |       | npling Metho                   | d   |        |                               | Ground Surface Elev. (NAVD88)                                                                                                                                         | ATP-0                                 | 3              |
|                 |      | Meadows<br>vating, LLC                 | Hitachi                                           |                       |               | 5B           |          |                     |                      |       | Grab                           |     |        |                               | 180' (est)                                                                                                                                                            |                                       |                |
|                 |      | Operator                               | Exploration                                       |                       |               |              |          |                     | Work                 | Star  | rt/Completion                  | Dat | es     |                               | Top of Casing Elev. (NAVD88)                                                                                                                                          | Depth to Water (Bel                   | low GS         |
|                 | Dave | e Monsaas                              | Tra                                               | ckh                   | oe            |              |          |                     |                      |       | 1/2/2025                       |     |        |                               | NA                                                                                                                                                                    | No Water Encou                        | ıntered        |
| Depth<br>(feet) |      | Exploration N<br>Completion            | Notes and<br>n Details                            | Sa<br>Ty <sub>l</sub> | mple<br>pe/ID |              | ater Cor | /foot 4<br>ntent (% | b)● Blow             | vs/6" | Tests                          |     | ateria |                               | Description                                                                                                                                                           | 1                                     | Dept<br>(ft)   |
| 1 -             | ·    | Backfill<br>excavat                    | led with<br>ted material in<br>ot-thick lifts and |                       |               |              |          | 30 40               |                      |       |                                |     |        | SILT W                        | TOPSOIL  ITH SAND (ML); loose, moist, costic; fine to medium sand; roots r.                                                                                           | dark brown;<br>up to 1 inch in        | <del>-</del> 1 |
| 2 -             |      | 60000000000000000000000000000000000000 | I with the<br>tor bucket.                         |                       |               |              |          |                     |                      |       | T-probe =5"                    |     |        | SILT W<br>brown; r<br>subangu | GHLY WEATHERED GLACIOL<br>DEPOSITS<br>(ITH SAND (ML); medium dense<br>non-plastic; fine to medium sand<br>alar to subrounded gravel; roots<br>r; iron-oxide staining. | e, moist, light<br>d; fine to coarse, | - 2<br>- 3     |
| 4 +             |      |                                        |                                                   | <b>E</b> 2            | 81            |              |          |                     | _                    |       | T-probe =3"<br>FC,MC<br>FC=87% |     |        | SILT W                        | ATHERED GLACIOLACUSTRI<br>ITH SAND (ML); dense, moist,<br>/; fine to medium sand; 0.1- to 0<br>P) partings with iron-oxide staini                                     | light brown; low 0.2-inch-thick fine  | <del>-</del> 4 |
| 6 +             |      |                                        |                                                   |                       |               |              |          |                     |                      |       |                                |     |        |                               |                                                                                                                                                                       |                                       | + 5<br>+ 6     |
| 7 -             | 173  |                                        |                                                   |                       |               |              |          |                     |                      |       |                                |     |        |                               |                                                                                                                                                                       |                                       | <b>-</b> 7     |
|                 | 172  |                                        |                                                   |                       |               |              |          |                     |                      |       |                                |     |        |                               |                                                                                                                                                                       |                                       | - 8            |
| 9 +             |      |                                        |                                                   |                       |               |              |          |                     |                      |       |                                |     |        | plasticity                    | GLACIOLACUSTRINE DEF<br>ITH SAND (ML); very dense, m<br>/; fine to medium sand; 0.1- to 0<br>P) partings.                                                             | oist, blue gray; low                  | -10            |
| 11-             | 169  |                                        |                                                   |                       |               |              |          |                     |                      |       |                                |     |        |                               |                                                                                                                                                                       |                                       | -11            |
| 12-             | 168  |                                        |                                                   | <b>B</b>              | S2            |              | _        |                     |                      |       |                                |     |        | Bottom                        | of exploration at 12.5 ft. bgs.                                                                                                                                       |                                       | - 12           |
| 13-             | 167  |                                        |                                                   |                       |               |              |          | -                   | _                    |       |                                |     |        |                               | o test pit caving observed.                                                                                                                                           |                                       | - 13           |
| 14-             | 166  |                                        |                                                   |                       |               |              |          | -                   | _                    |       |                                |     |        |                               |                                                                                                                                                                       |                                       | - 14           |
| Sample<br>Type  |      | gend<br>Grab sample                    |                                                   |                       | l<br>Plast    | Water min si |          |                     | uid Limit            |       | ıntered                        |     |        | of symbo                      |                                                                                                                                                                       | Explorati<br>Log<br>ATP-03            | 3              |

|                                                                   | A                                                    | spect                                                |                 | J     | oh     | Proje       | ct Ada | Iress   | & Site        | <b>ty - 1</b><br>e Specifi<br>See Fig | AS2405<br>c Location<br>ure 2. | 6′  | 1              |                                                                                                          | Geotechnical Ex<br>Coordinates (Lat,Lon WGS84)<br>47.7255, -122.6295 (est)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Exploration Number                                                                                                                                                    |                      |
|-------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------|-------|--------|-------------|--------|---------|---------------|---------------------------------------|--------------------------------|-----|----------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                                                                   | High<br>Exca                                         | Contractor<br>n Meadows<br>vating, LLC               | Equ<br>Hitachi  | Zax   | is 85  | 5B          |        |         |               | Sai                                   | mpling Method<br>Grab          |     | to -           |                                                                                                          | Ground Surface Elev. (NAVD88)  165' (est)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ATP-04                                                                                                                                                                |                      |
|                                                                   |                                                      | Operator<br>e Monsaas                                | Exploration Tra |       |        | 1(S)        |        |         |               |                                       | rt/Completion<br>1/2/2025      | Dai | tes            |                                                                                                          | Top of Casing Elev. (NAVD88)  NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Depth to Water (Below on No Water Encounter                                                                                                                           |                      |
|                                                                   | Elev.                                                | Exploration N                                        | lotes and       | Sa    | mple   | Wat         |        | ntent ( | (%)●          | Blows/6                               |                                |     | ateria         |                                                                                                          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                       | Dept<br>(ft)         |
| 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 | Elev. (feet) -164 -163 -162 -161 -159 -158 -157 -156 | Completion  Backfille excavat one-foo tamped excavat | Details         | SaTyr | pe/ID  | \//at       | er Cor | ntent ( | (%)●          |                                       | DCPT =3,8,9                    |     | aterii<br>Type | SILT W non-plas diameter  HIII SANDY moist, lig to coarse subroun staining.  WE SANDY fine to m partings | TOPSOIL  ITH SAND (ML); loose, moist, of stic; fine to medium sand; roots r.  GHLY WEATHERED GLACIOL DEPOSITS  SILT WITH GRAVEL (ML); meght brown; low plasticity; fine to e, subangular to subrounded grided cobbles up to 4 inches in directly for the sand; o.1- to 0.2-inch-the sand; o.1- to 0.2-inch-the sand; o.1- to 0.2-inch-the sand; o.1- to 0.5-inch-the sand; o.1- to 0 | dark brown; up to 1 inch in  ACUSTRINE edium dense, coarse sand; fine avel; subangular to iameter; iron-oxide  INE DEPOSITS gray; low plasticity; iick fine sand (SP) | 1 2 3 4 5 6 7 8 9 10 |
| 307ECT 3/48<br>11 -                                               | -<br>154                                             |                                                      |                 |       |        | _ + -       | _ -    | -       |               | _                                     |                                |     |                | Note: No                                                                                                 | o test pit caving observed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                                                                                                                                     | ·11                  |
| Technique 12                                                      | -153                                                 |                                                      |                 |       |        |             | _      | -       |               |                                       |                                |     |                |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                                                                                                                                                                     | ·12                  |
| 13-                                                               | -152                                                 |                                                      |                 |       |        | _           | _  -   | -       |               |                                       |                                |     |                |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                                                                                                                                                                     | 13                   |
| 14-                                                               | -151                                                 |                                                      |                 |       |        |             | _      | -       |               |                                       |                                |     |                |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                     | 14                   |
| Sample                                                            | (80)                                                 | gend<br>Grab sample                                  |                 |       | Plasti | Water Level |        |         | iquid<br>Vate |                                       | untered                        |     |                | of symbo<br>Logged b                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Exploration Log ATP-04 Sheet 1 of 1                                                                                                                                   | 1                    |

| 0                                          | Λ                                            | cnast                                      |                                                                               | J        | loh           | nsc   | on F    | Pro    | pei                   | rty - A                        | AS240              | 561         |   |                                                                                                                 | Geotechnical Exp                                                        | oloration Lo                                                                                                | g                                                    |
|--------------------------------------------|----------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------|----------|---------------|-------|---------|--------|-----------------------|--------------------------------|--------------------|-------------|---|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|                                            | Co                                           | SPECT                                      |                                                                               |          |               | -     |         |        |                       | e <i>Specifi</i> e<br>See Figu | Location<br>ure 2. |             |   |                                                                                                                 | Coordinates (Lat,Lon WGS84)<br>47.7233, -122.6286 (est)                 | Exploration Nur                                                                                             |                                                      |
|                                            | С                                            | ontractor<br>Meadows                       | Equ                                                                           | ıipm     | ent           |       |         | ,      |                       |                                | npling Metho       | d           |   |                                                                                                                 | Ground Surface Elev. (NAVD88)                                           | ⊢ ATP-0                                                                                                     | 15                                                   |
|                                            | Exca                                         | vating, LLC                                | Hitachi                                                                       |          |               |       |         |        |                       |                                | Grab               |             |   |                                                                                                                 | 160' (est)                                                              |                                                                                                             |                                                      |
|                                            |                                              | Operator<br>e Monsaas                      | Exploration                                                                   |          |               | d(s)  |         |        |                       |                                | rt/Completion      | n Dates     | S |                                                                                                                 | Top of Casing Elev. (NAVD88)                                            | Depth to Water (Be                                                                                          |                                                      |
|                                            |                                              |                                            | Tra                                                                           | T        |               |       | Blows   | s/foot | _                     |                                | 1/2/2025           | 1           |   |                                                                                                                 | NA NA                                                                   | 2' (Seep)                                                                                                   |                                                      |
|                                            | Elev.<br>(feet)                              | Exploration<br>Completio                   |                                                                               | Sa<br>Ty | mple<br>pe/ID | 0 10  | ater Co | ntent  | (%) <b>●</b><br>40 50 | Blows/6'                       | Tests              | Mate<br>Typ |   |                                                                                                                 | Description                                                             |                                                                                                             | Dep<br>(ft)                                          |
| 1 - 2 - 3 - 4 - 5 - 6 - 7 - 10 - 11 - 12 - | -159<br>-158<br>-157<br>-156<br>-155<br>-154 | Completio  Backfil  Cone-for tamper excava | n Details  led with ted material in st-thick lifts and d with the tor bucket. | Ty       | pe/ID         | "     |         |        |                       |                                | DCPT<br>=8,16,22   |             |   | SILT W non-plas diameter  4-inch- SAND V medium sand; fir faceted up to 5 in Ground  SILT W low plasts sand (SF | TOPSOIL ITH SAND (ML); loose, moist, outing; fine to medium sand; roots | JTWASH SM); e to coarse brounded, ded cobbles staining.  POSITS oist, gray brown; b 0.2-inch-thick fine ng. | - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 e - 10 - 11 - 12 |
| Sample Type                                | - Tan                                        | <b>jend</b><br>Grab sample                 |                                                                               |          | Plast         | Water | 9       |        | _iquid                | Limit<br>evel (Se              | eepage)            |             |   | of symbol                                                                                                       |                                                                         | Explorati<br>Log<br>ATP-05                                                                                  | 5                                                    |

|                 | A                    | spect                                 |                                                                                       | J   | oh            | nse<br>Pro | on<br>iect A | Pro  | pe<br>s & Sit    | rty - 1<br>te Specifi | AS240                 | 56    | 1            |                   |                                                                               | Geotechnica<br>Coordinates (Lat,Lon W                                                           |                                        | oloration Lo                      |                   |
|-----------------|----------------------|---------------------------------------|---------------------------------------------------------------------------------------|-----|---------------|------------|--------------|------|------------------|-----------------------|-----------------------|-------|--------------|-------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------|-------------------|
|                 | _                    | NSULTING                              |                                                                                       |     |               | -          |              |      |                  | See Fig               | ure 2.                |       |              |                   |                                                                               | 47.7232, -122.6269                                                                              | (est)                                  | ATP-0                             |                   |
|                 |                      | Contractor<br>Meadows                 | Equ                                                                                   |     |               |            |              |      |                  | Sar                   | mpling Metho          | od    |              |                   |                                                                               | Ground Surface Elev. (N.                                                                        | 4 <i>VD</i> 88)                        | A11-0                             | U                 |
|                 |                      | vating, LLC<br>Operator               | Hitachi<br>Exploration                                                                |     |               |            |              |      |                  | Work Sta              | Grab<br>art/Completio | n Da  | toc          |                   |                                                                               | 180' (est) Top of Casing Elev. (NA                                                              | V/D88)                                 | Depth to Water (Bel               | low GS            |
|                 |                      | e Monsaas                             | Tra                                                                                   |     |               | 1(3)       |              |      |                  |                       | 1/2/2025              | 11 00 | iles         |                   |                                                                               | NA                                                                                              | VD00)                                  | 2' (Seep)                         | OW OO,            |
| Depth<br>(feet) | Elev.                | Exploration I                         | Notes and                                                                             | Sa  | mple<br>pe/ID | VV         | ater C       |      | t (%)●           | Blows/6'              |                       | М     | ater<br>Type | al                |                                                                               | Descriptio                                                                                      | n                                      | 2 (GGG)                           | Dept<br>(ft)      |
| (leet)          | (leet)               | Completion                            | ii Details                                                                            | ı y | pe/ID         | 0 1        | 0 20         | 30   | 40 50            | 0                     |                       | +     | Тур          |                   |                                                                               | TOPSO                                                                                           | NL                                     |                                   | (11)              |
| 2 -             | -179<br>-178<br>-177 | excava<br>one-foo<br>tamped<br>excava | led with<br>ted material in<br>bt-thick lifts and<br>d with the<br>tor bucket.<br>025 |     |               |            |              | <br> |                  |                       |                       |       |              | bro<br>sub<br>dia | own; no bangul ameter.                                                        | SILT WITH GRAVEL ( on-plastic; fine to coars lar to subrounded grave .  water seep at 2 feet bg | ML); loo<br>e sandl<br>sl; roots<br>s. | fine to coarse, up to 3 inches in | - 1<br>- 2<br>- 3 |
|                 | -176                 |                                       | <b>19</b> 3                                                                           | S1  |               |            |              | _    |                  | DCPT<br>=8,13,11      |                       | \     | bro          | own; lo           | ITH SAND (ML); mediu<br>ow plasticity; fine to coa<br>lar to subrounded grave | rse sand                                                                                        | l; fine to coarse,                     | - 4                               |                   |
| 5 -             | -175                 |                                       |                                                                                       |     |               |            |              |      |                  |                       |                       |       | SI           | ILT WI            | GLACIOLACUSTRI<br>ITH SAND (ML); very di<br>; fine to medium sand; (          | ense, m                                                                                         | oist, blue gray; low                   | 5                                 |                   |
| 6 -             | -174                 |                                       |                                                                                       |     |               |            | -            | -    |                  |                       |                       |       | sar          | nd (SP            | ) partings.                                                                   |                                                                                                 |                                        | - 6                               |                   |
| 7 -             | -173                 |                                       |                                                                                       |     |               |            |              |      | _  -             |                       |                       |       |              |                   |                                                                               |                                                                                                 |                                        |                                   | - 7               |
| 8 -             | -172                 |                                       |                                                                                       |     |               |            |              |      | -                |                       |                       |       |              |                   |                                                                               |                                                                                                 |                                        |                                   | 8                 |
| 9 -             | -171                 |                                       |                                                                                       |     |               |            |              | -    | _                |                       |                       |       |              |                   |                                                                               |                                                                                                 |                                        |                                   | 9                 |
| 10-             | -170                 |                                       |                                                                                       |     |               |            |              |      |                  |                       |                       |       |              |                   |                                                                               |                                                                                                 |                                        |                                   | -10               |
| 11-             | -169                 |                                       |                                                                                       |     |               |            |              | -    | -                |                       |                       |       |              |                   |                                                                               |                                                                                                 |                                        |                                   | <del>-</del> 11   |
| 12-             | -168                 |                                       |                                                                                       |     |               |            |              | -    | _                |                       |                       |       |              |                   |                                                                               |                                                                                                 |                                        |                                   | -12               |
| 13-             | -167                 |                                       |                                                                                       | m   | S2            |            |              | _    | _                |                       |                       |       |              | Bot               | ottom o                                                                       | of exploration at 13 ft. bo                                                                     | ns.                                    |                                   | 13                |
| 14-             | -166                 |                                       |                                                                                       |     |               |            |              |      | _  -             |                       |                       |       |              |                   |                                                                               | test pit caving observe                                                                         |                                        |                                   | - 14              |
|                 |                      |                                       |                                                                                       |     |               |            |              |      |                  |                       |                       |       |              |                   |                                                                               |                                                                                                 |                                        |                                   |                   |
| Sample          | 1                    | gend<br>Grab sample                   |                                                                                       |     | Plast         | Water oil  | 13           |      | Liquid<br>ater L | Limit<br>evel (Se     | l<br>eepage)          |       |              | of sy<br>Log      | symbols                                                                       |                                                                                                 | anation                                | Exploration Log ATP-06            | ;                 |

|                 | A.              | cnoct                       |                                                               | J        | oh   | ns    | on     | Pro    | pe    | rty - A                        | <b>AS240</b>     | 56   | 1             |                       | Geotechnical Exp                                                                                              | oloration Lo                        | g               |
|-----------------|-----------------|-----------------------------|---------------------------------------------------------------|----------|------|-------|--------|--------|-------|--------------------------------|------------------|------|---------------|-----------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------|
|                 |                 | spect                       |                                                               |          |      | -     |        |        |       | e <i>Specifi</i> o<br>See Figu | Location         |      |               |                       | Coordinates (Lat,Lon WGS84)                                                                                   | Exploration Num                     |                 |
|                 |                 | ONSULTING<br>Contractor     | Egu                                                           | maiı     | ent  |       | Pouls  | SDO, V | ۷A, ۵ |                                | npling Metho     | od   |               |                       | 47.7239, -122.6280 (est)  Ground Surface Elev. (NAVD88)                                                       | ATP-0                               | 7               |
|                 | High            | Meadows<br>vating, LLC      | Hitachi                                                       | •        |      | 5B    |        |        |       |                                | Grab             |      |               |                       | 195' (est)                                                                                                    |                                     |                 |
|                 |                 | Operator                    | Exploration                                                   |          |      |       |        |        |       | Work Sta                       | rt/Completio     | n Da | ites          |                       | Top of Casing Elev. (NAVD88)                                                                                  | Depth to Water (Bel                 | low GS          |
|                 |                 | e Monsaas                   | Tra                                                           |          |      | ,     |        |        |       |                                | 1/2/2025         |      |               |                       | NA NA                                                                                                         | No Water Encou                      |                 |
| Depth<br>(feet) | Elev.<br>(feet) | Exploration N               | Notes and<br>n Details                                        | Sa<br>Ty | mple | "     | ater C |        | (%)●  | Blows/6'                       | Tests            |      | later<br>Type |                       | Description                                                                                                   | 1                                   | Dep             |
| 1 -             | -194            | excavat                     | ed with<br>ted material in<br>t-thick lifts and<br>I with the |          |      |       | 0 20   |        | 40 50 | _                              |                  |      |               | SILT \ non-pla diamet |                                                                                                               | up to 1 inch in                     | - 1             |
|                 | 102             | excavat                     | tor bucket.                                                   |          |      |       |        |        |       |                                |                  |      |               |                       | IIGHLY WEATHERED GLACIOL<br>DEPOSITS                                                                          |                                     |                 |
|                 | -193            |                             |                                                               |          |      |       |        |        |       |                                |                  |      |               | brown;                | VITH SAND (ML); medium dense<br>low plasticity; fine to medium sar<br>h-thick fine sand (SP) partings w<br>g. | nd 0.1-to                           | + 2<br>+ 3      |
| 4 -             | -192            |                             |                                                               |          |      |       |        |        |       |                                |                  |      |               |                       |                                                                                                               |                                     | - 3<br>- 4      |
| 4               | 191             |                             |                                                               | my.      | S1   |       |        |        |       |                                | DCPT<br>=13,9,19 |      |               | SILT \                | EATHERED GLACIOLACUSTRI<br>VITH SAND (ML); dense, very m                                                      | oist, light brown;                  | "               |
| 5 -             | -190            |                             |                                                               |          |      |       |        |        |       |                                |                  |      |               |                       | sticity; fine to medium sand 0.1-tond (SP) partings.                                                          | o 0.2-inch-thick                    | - 5             |
| 6 -             | -189            |                             |                                                               |          |      |       |        | -      | -     |                                |                  |      |               |                       |                                                                                                               |                                     | - 6             |
| 7 -             | -188            |                             |                                                               |          |      |       |        | -      | -     |                                |                  |      |               |                       |                                                                                                               |                                     | - 7             |
| 8 -             | -187            |                             |                                                               |          |      |       |        |        | -     |                                |                  |      |               |                       |                                                                                                               |                                     | 8               |
| 9 -             | -186            |                             |                                                               |          |      |       |        | -      | -     |                                |                  |      |               |                       |                                                                                                               |                                     | 9               |
| 10-             | -185            |                             |                                                               |          |      |       |        |        |       |                                |                  |      |               | plastici              | GLACIOLACUSTRINE DEF<br>WITH SAND (ML); very dense, m<br>ty; fine to medium sand; 0.1-to 0.                   | oist, blue gray, low                | 10              |
| 11-             | -184            |                             |                                                               | 3        | S2   |       |        | -      | -   - |                                |                  |      |               |                       | SP) partings.                                                                                                 |                                     | -11             |
| 12-             | -183            |                             |                                                               |          |      |       |        | -   -  | -  -  |                                |                  |      |               |                       | of exploration at 11.5 ft. bgs.  No test pit caving observed.                                                 |                                     | <del>-</del> 12 |
|                 |                 |                             |                                                               |          |      |       |        |        |       |                                |                  |      |               | 14016. 1              | to toot pit ouving oboot vou.                                                                                 |                                     |                 |
| 13-             | -182            |                             |                                                               |          |      |       |        | -   -  |       |                                |                  |      |               |                       |                                                                                                               |                                     | <del>-</del> 13 |
| 14-             | -181            |                             |                                                               |          |      |       |        | -      | -     | +                              |                  |      |               |                       |                                                                                                               |                                     | - 14            |
| Sample          | CORD.           | g <b>end</b><br>Grab sample |                                                               |          | Plas | Water |        |        |       | Limit<br>er Encou              | untered          |      |               | of symb               |                                                                                                               | Exploration Log ATP-07 Sheet 1 of 1 | •               |

|                              | Λ.       | cnoct                                    |                                                 | J            | oh       | nsc      | on             | Pro                | pe               | rty - /           | <b>AS240</b> 5                       | 561                                     |                                  | Geotechnical Ex                                                                                                                                      | oloration Lo                                    | g                         |  |
|------------------------------|----------|------------------------------------------|-------------------------------------------------|--------------|----------|----------|----------------|--------------------|------------------|-------------------|--------------------------------------|-----------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------|--|
|                              | <u> </u> | spect                                    |                                                 |              |          | •        |                |                    |                  | ,                 | C Location                           |                                         |                                  | Coordinates (Lat,Lon WGS84)                                                                                                                          | Exploration Nun                                 |                           |  |
|                              |          | ONSULTING<br>Contractor                  | Fau                                             | ipme         | ent      |          | oul            | spo, V             | ۷A, \$           | See Figu<br>San   | ure 2.<br>npling Metho               | d                                       |                                  | 47.7256, -122.6267 (est) Ground Surface Elev. (NAVD88)                                                                                               | ATP-0                                           | 8                         |  |
|                              | High     | Meadows                                  | Hitachi                                         |              |          | 5B       |                |                    |                  | Gar               | Grab                                 | ~                                       |                                  | 335' (est)                                                                                                                                           |                                                 |                           |  |
|                              |          | vating, LLC<br>Operator                  | Exploration                                     |              |          |          | +              |                    |                  | Work Sta          | rt/Completion                        | n Dates                                 |                                  | Top of Casing Elev. (NAVD88)                                                                                                                         | Depth to Water (Be                              | Depth to Water (Below GS) |  |
|                              |          | e Monsaas                                | 1                                               | ckho         |          | -(0)     |                |                    |                  |                   | 1/3/2025                             | . 2 4.00                                |                                  | NA                                                                                                                                                   | No Water Encou                                  | •                         |  |
|                              | Elev.    | Exploration N                            | Notes and                                       | Sar          | mple     | Wa       | Blov<br>ater C | ws/foot<br>Content | <b>▲</b><br>(%)● |                   |                                      | Materia                                 | al                               | Description                                                                                                                                          |                                                 | Dept                      |  |
| (feet)                       | (feet)   | Completion                               | Details                                         | Тур          | pe/ID    | 0 10     |                |                    | 40 50            |                   |                                      | Type                                    |                                  | TOPSOIL                                                                                                                                              |                                                 | (ft)                      |  |
| 1 -                          | -334     | Backfill<br>excavat<br>one-foo<br>tamped | ed material in<br>t-thick lifts and<br>with the |              |          |          | -              |                    | -                |                   |                                      |                                         | non-plas<br>diamete              |                                                                                                                                                      | up to 1 inch in                                 | <u> </u>                  |  |
| 2 -                          | -333     | excavat                                  | or bucket.                                      |              |          |          | -              | -                  | -                |                   |                                      | 000000000000000000000000000000000000000 | GRAVE<br>dense, of<br>coarse,    | VASHON RECESSIONAL OU<br>EL WITH SAND AND COBBLE<br>moist, gray brown; fine to coan<br>subangular to subrounded gra<br>bunded cobbles up to 5 inches | S (GP); medium se sand; fine to vel; subangular | - 2                       |  |
| 3 -                          | -332     |                                          |                                                 |              |          | _        |                | _                  | -                |                   |                                      | 000000000                               |                                  | January Copples up to 5 mones                                                                                                                        | in dameter.                                     | - 3                       |  |
| 4 -                          | -331     | elevate                                  | olow counts<br>d due to<br>ce of cobbles.       | <b>®</b>     | - 4<br>S | 1.6      |                | -                  | -                |                   | DCPT<br>=8,16,30<br>PS,MC<br>FC=4.7% | 000000000                               | Becom                            | nes dense.                                                                                                                                           |                                                 | - 4                       |  |
| 5 -                          | -330     |                                          |                                                 |              |          |          |                |                    |                  |                   |                                      | 00000000                                |                                  |                                                                                                                                                      |                                                 | - 5                       |  |
| 6 -                          | -329     |                                          |                                                 |              |          |          | -              | _                  | -                |                   |                                      | 000000000000000000000000000000000000000 |                                  |                                                                                                                                                      |                                                 | - 6                       |  |
| 7 -                          | -328     |                                          |                                                 |              |          |          |                | -                  | -                |                   |                                      | 000000000000000000000000000000000000000 |                                  |                                                                                                                                                      |                                                 | 7                         |  |
| 8 -                          | -327     |                                          |                                                 |              |          |          |                |                    | -                |                   |                                      | 00000000                                |                                  |                                                                                                                                                      |                                                 | - 8                       |  |
| 9 -                          | -326     |                                          |                                                 |              |          |          |                |                    | -                |                   |                                      | 00000000                                | Becom<br>inches in               | nes with subangular to subrounc<br>n diameter.                                                                                                       | led cobbles up to 8                             | 9                         |  |
| 10-                          | -325     |                                          |                                                 |              |          |          |                |                    |                  |                   |                                      | 00000000                                |                                  |                                                                                                                                                      |                                                 | -10                       |  |
| 11-                          | -324     |                                          |                                                 | <b>€</b> 2   | S2       |          |                | -                  | -                |                   |                                      | 00000000                                |                                  |                                                                                                                                                      |                                                 | 11                        |  |
| 12-                          | 323      |                                          |                                                 | $\mathbb{H}$ | 3)       | $\vdash$ | -              | -                  | -                | +                 |                                      | 3000                                    | Bottom                           | of exploration at 12 ft. bgs.                                                                                                                        |                                                 | 12                        |  |
|                              |          |                                          |                                                 |              |          |          |                |                    |                  |                   |                                      |                                         |                                  | o test pit caving observed.                                                                                                                          |                                                 |                           |  |
| 13-                          | -322     |                                          |                                                 |              |          |          |                | -                  | -                |                   |                                      |                                         | 11010.110                        | 2 1231 pit surring observed.                                                                                                                         |                                                 | -13                       |  |
| 14-                          | -321     |                                          |                                                 |              |          |          |                | -                  | -                |                   |                                      |                                         |                                  |                                                                                                                                                      |                                                 | - 14                      |  |
|                              | -        | gend<br>Grab sample                      |                                                 |              | Plasti   | ic Limi  | it ⊢           |                    | _iquid<br>Wate   | Limit<br>er Encou | untered                              |                                         |                                  | oration Log Key for explanation                                                                                                                      | Explorati                                       | ion                       |  |
| 9 - 10 - 11 - 12 - 13 - 14 - | 5        | Orab sample                              |                                                 |              |          | Water    |                |                    |                  |                   |                                      |                                         | of symbo<br>Logged b<br>Approved |                                                                                                                                                      | Log<br>ATP-08<br>Sheet 1 of                     | 3                         |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Λ.              | spost                       |                                                                | J          | oh           | nsc            | n P    | rop    | oer               | ty - A   | AS2405                           | 56′   | 1              |                                            | Geotechnical Exp                                                                                                                                                                        | oloration Log                                             | g            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------|----------------------------------------------------------------|------------|--------------|----------------|--------|--------|-------------------|----------|----------------------------------|-------|----------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | spect                       |                                                                |            |              | •              |        |        |                   | ,        | c Location                       |       |                |                                            | Coordinates (Lat,Lon WGS84)                                                                                                                                                             | Exploration Num                                           |              |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | ON SULTING<br>Contractor    | Fau                                                            | ipme       | ent          | <u> </u>       | ouisbo | ), VV  | Α, δ              | ee Figi  | ure 2.<br>mpling Metho           | d     |                |                                            | 47.7258, -122.6276 (est) Ground Surface Elev. (NAVD88)                                                                                                                                  | <b>⊢ ATP-0</b> 9                                          | 9            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | High            | n Meadows                   | Hitachi 2                                                      | •          |              | 5B             |        |        |                   |          | Grab                             |       |                |                                            | 260' (est)                                                                                                                                                                              |                                                           |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | vating, LLC<br>Operator     | Exploration                                                    |            |              |                |        |        | V                 | Vork Sta | rt/Completion                    | n Dai | tes            |                                            | Top of Casing Elev. (NAVD88)                                                                                                                                                            | Depth to Water (Beld                                      | ow GS        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dave            | e Monsaas                   | 1                                                              | ckhc       |              | . ,            |        |        |                   |          | 1/3/2025                         |       |                |                                            | NA NA                                                                                                                                                                                   | 7' (Seep)                                                 | ,            |
| Depth<br>(feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Elev.<br>(feet) | Exploration I<br>Completion | Notes and<br>n Details                                         | San<br>Typ | nple<br>e/ID | Wa<br>0 10     |        | tent ( | ▲<br>%)●<br>40 50 | Blows/6' | Tests                            |       | ateria<br>Type | al                                         | Description                                                                                                                                                                             |                                                           | Dept<br>(ft) |
| 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -259            | one-foo                     | led with<br>ted material in<br>t-thick lifts and<br>d with the |            |              |                |        |        | +0 50             |          |                                  |       |                | loose, m<br>coarse,<br>subroun<br>2 inches | TOPSOIL SAND WITH GRAVEL AND CO noist, dark brown; fine to coarse subangular to subrounded grave ded cobbles up to 4 inches in di s in diameter.                                        | sand; fine to<br>el; subangular to<br>ameter; roots up to | - 1          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -258            | 50000                       | tor bucket.                                                    |            |              |                | _      | -      |                   |          | T-probe =6"                      |       |                | SILTY S<br>medium<br>sand; fii<br>gravel;  | VASHON RECESSIONAL OU<br>SAND WITH GRAVEL AND CO<br>I dense, moist, gray brown; fine<br>to coarse, subangular to sub<br>subangular to subrounded cob<br>n diameter; iron-oxide staining | DBBLES (SM);<br>e to coarse<br>prounded<br>bles up to 4   | - 2          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -257            |                             |                                                                |            |              |                | _      |        |                   | •        |                                  |       |                | SILTY to mediu                             | SAND (SM); medium dense, we um sand; iron-oxide staining.                                                                                                                               | et, light brown; fine                                     | 3            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -256            |                             |                                                                | <b>~</b>   | S            |                | 30.2   |        |                   |          | T-probe =4"<br>PS,MC<br>FC=39.2% |       |                |                                            |                                                                                                                                                                                         |                                                           | + 4          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -255<br>-254    |                             |                                                                |            |              |                |        |        |                   |          |                                  |       |                |                                            |                                                                                                                                                                                         |                                                           | + 5<br>+ 6   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -253            | 00000                       | 025                                                            |            |              |                |        |        |                   | -        |                                  |       |                | -                                          |                                                                                                                                                                                         |                                                           | 7            |
| (included in the control of the cont | -252            |                             |                                                                |            |              |                |        | -      |                   |          |                                  |       |                |                                            |                                                                                                                                                                                         |                                                           | - 8          |
| 9 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -251            | Bottom at 10 fe             | of exploration<br>eet bgs due to                               |            |              |                | _ -    | -      |                   |          |                                  |       |                | -<br>-<br>-<br>-                           |                                                                                                                                                                                         |                                                           | <b>-</b> 9   |
| 10-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -250            |                             |                                                                | <b>7</b>   | S2           |                |        |        |                   |          |                                  |       |                | Bottom                                     | of exploration at 10 ft. bgs.                                                                                                                                                           |                                                           | 10           |
| 11-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -249            |                             |                                                                |            |              |                | _ -    | -      |                   |          |                                  |       |                | Note: Te feet bgs                          | est pit caved in from sidewalls be                                                                                                                                                      | etween 9 and 10                                           | -11          |
| 12-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -248            |                             |                                                                |            |              |                | _ -    | -      |                   |          |                                  |       |                |                                            |                                                                                                                                                                                         |                                                           | -12          |
| 13-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -247            |                             |                                                                |            |              |                | _      | -      |                   |          |                                  |       |                |                                            |                                                                                                                                                                                         |                                                           | -13          |
| 14-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -246            |                             |                                                                |            |              |                | _      | -      |                   |          |                                  |       |                |                                            |                                                                                                                                                                                         |                                                           | - 14         |
| <u>:</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                             |                                                                |            |              |                |        |        |                   |          |                                  | 1     |                |                                            |                                                                                                                                                                                         |                                                           |              |
| Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (AN)            | gend<br>Grab sample         |                                                                | F          | Plasti       | Water<br>Level | 91     |        | quid I            |          | eepage)                          |       |                | of symbo                                   |                                                                                                                                                                                         | Exploration Log ATP-09                                    |              |

|                              | Λ               | cnoct                          |                                                               | J           | Joh             | nsc        | n         | Pro              | ope    | erty -   | AS240                               | )56   | 61       |              |                               | Geotechnical Exp                                                                                           | loration Lo                           | g               |
|------------------------------|-----------------|--------------------------------|---------------------------------------------------------------|-------------|-----------------|------------|-----------|------------------|--------|----------|-------------------------------------|-------|----------|--------------|-------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------|
|                              |                 | SPECT<br>INSULTING             | Equ                                                           | inm         | nont            | •          |           |                  |        | See Fig  | ic Location<br>ure 2.<br>mpling Met | hod   |          |              |                               | Coordinates (Lat,Lon WGS84)<br>47.7256, -122.6284 (est)<br>Ground Surface Elev. (NAVD88)                   | Exploration Num  ATP-1                |                 |
|                              | High            | Meadows                        | Hitachi                                                       | •           |                 | 5B         |           |                  |        | Sa       | Grab                                | nou   |          |              |                               | 240' (est)                                                                                                 |                                       |                 |
|                              |                 | vating, LLC<br>Operator        | Exploration                                                   |             |                 |            |           |                  |        | Work Sta | art/Complet                         | ion L | Dat      | es           |                               | Top of Casing Elev. (NAVD88)                                                                               | Depth to Water (Bel                   | low GS)         |
|                              | Dave            | ,<br>e Monsaas                 | Tra                                                           |             |                 | ( )        |           |                  |        |          | 1/3/2025                            |       |          |              |                               | NA NA                                                                                                      | No Water Encou                        | ,               |
|                              | Elev.<br>(feet) | Exploration N<br>Completion    | l<br>lotes and<br>Details                                     | Sa<br>Ty    | ample<br>/pe/ID | Wa<br>0 10 | ater (    | ws/foo<br>Conter | nt (%) | Blows/6  | " Tests                             |       |          | iteri<br>ype |                               | Description                                                                                                |                                       | Depth<br>(ft)   |
|                              | 000             | Backfille                      | and a solida                                                  |             |                 |            |           | 0 00             |        | 50       |                                     |       |          |              | SILT W<br>non-plas<br>diamete | TOPSOIL /ITH SAND (ML); loose, moist, cotic; fine to medium sand; roots r.                                 | lark brown;<br>up to 1 inch in        |                 |
| 1 -                          | -239            | excavate<br>one-foot<br>tamped | ed material in<br>t-thick lifts and<br>with the<br>or bucket. |             |                 |            |           |                  |        |          |                                     |       |          |              | <br>   SILT W                 | GHLY WEATHERED GLACIOL<br>DEPOSITS<br>/ITH SAND (ML); loose to mediu<br>wn; low plasticity; fine to mediur | ım dense, moist,                      | 1               |
| 2 -                          | -238            |                                |                                                               |             |                 |            | -         | _                |        |          |                                     |       |          |              | roots an                      | d organics; mottled iron-oxide st                                                                          | aining. <sup>°</sup>                  | <b>- 2</b>      |
| 3 -                          | -237            |                                |                                                               |             |                 |            | -         | _                |        |          |                                     |       |          |              | 2-foot-                       | diameter granodiorite boulder at                                                                           | 3 feet bgs.                           | - 3             |
| 4 -                          | -236            |                                |                                                               | <b>6</b> 17 | S S             |            | -         | - +              | - -    | _        | T-probe :                           | =3"   |          |              | SILT W                        | ATHERED GLACIOLACUSTRII /ITH SAND (ML); dense, moist, y; fine to medium sand; 0.1-to 0.                    | light brown; low<br>2-inch-thick fine | 4               |
| 5 -                          | -235            |                                |                                                               |             |                 |            |           |                  |        |          |                                     |       |          |              | sand (Si                      | P) partings with iron-oxide staini                                                                         | ng.                                   | - 5             |
| 6 -                          | -234            |                                |                                                               |             |                 |            | -         | -                | - -    | _        |                                     |       |          |              |                               |                                                                                                            |                                       | - 6             |
| 7 -                          | -233            |                                |                                                               |             |                 |            | -         | _                | - -    | _        |                                     |       |          |              |                               |                                                                                                            |                                       | 7               |
| 7 -                          | -232            |                                |                                                               |             |                 | _          | _         |                  | - -    | _        |                                     |       |          |              |                               |                                                                                                            |                                       | - 8             |
| 9 -                          | -231            |                                |                                                               |             |                 | _          | _ }       |                  | -      | _        |                                     |       |          |              |                               |                                                                                                            |                                       | - 9             |
| 10-                          | -230            |                                |                                                               | <b>69</b> 7 | S2              |            | 25        | i.6              | +      |          | FC=8:                               | 5%    | <b>\</b> | \            | SILT W                        | GLACIOLACUSTRINE DEF                                                                                       | oist, light brown;                    | 10              |
| 11-                          | -229            |                                |                                                               |             |                 |            | -         |                  | - -    | -        |                                     |       |          |              | low plas<br>fine san          | ticity; fine to medium sand; 0.1-i<br>d (SP) partings with iron-oxide s                                    | to 0.2-inch-thick taining.            | <del>-</del> 11 |
| 12-                          | -228            |                                |                                                               | en,         | S3              |            | _         |                  | - -    | _        |                                     |       |          |              |                               |                                                                                                            |                                       | -12             |
|                              |                 | M V JEW V J                    |                                                               |             |                 |            |           |                  |        |          |                                     | Ī     |          |              | Bottom                        | of exploration at 12.5 ft. bgs.                                                                            |                                       |                 |
| 13-                          | -227            |                                |                                                               |             |                 |            | -         | -+               | - -    | _        |                                     |       |          |              | Note: No                      | o test pit caving observed.                                                                                |                                       | -13             |
| 14-                          | -226            |                                |                                                               |             |                 |            | -         | _                | - -    | -        |                                     |       |          |              |                               |                                                                                                            |                                       | -14             |
| _                            |                 | gend                           |                                                               |             | Plast           | ic Limi    | t <u></u> |                  |        | d Limit  | <u> </u>                            |       |          |              | See Expl                      | oration Log Key for explanation                                                                            | <b>.</b>                              |                 |
| 9 - 10-<br>11-<br>12-<br>13- | <u> </u>        | Grab sample                    |                                                               |             |                 | Water      |           | No               | o Wa   | ter Enco | untered                             |       |          |              | of symbo                      | ls                                                                                                         | Exploration Log ATP-10 Sheet 1 of 1   | )               |

|                                                              | Λ.                                                                           | enoct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | J         | oh            | ns    | on     | Pro     | pe     | rty -            | AS2405                    | 56 <sup>'</sup> | 1            |                                                                                                        | Geotechnical Exp                                                                                                                                                                                                                        |                                                                                                                                                                |                                 |
|--------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------|---------------|-------|--------|---------|--------|------------------|---------------------------|-----------------|--------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|                                                              |                                                                              | spect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |           |               | -     |        |         |        |                  | c Location                |                 |              |                                                                                                        | Coordinates (Lat,Lon WGS84)                                                                                                                                                                                                             | Exploration Nun                                                                                                                                                | nber                            |
| _                                                            |                                                                              | ON SULTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Equ                    | inm       | ont           |       | Poul   | sbo, ∖  | NA, S  | See Fig          | ure 2.<br>mpling Metho    | d               |              |                                                                                                        | 47.7247, -122.6286 (est)  Ground Surface Elev. (NAVD88)                                                                                                                                                                                 | ATP-1                                                                                                                                                          | 1                               |
|                                                              | High                                                                         | n Meadows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · '                    | •         |               |       |        |         |        | Sal              |                           | u               |              |                                                                                                        | , ,                                                                                                                                                                                                                                     |                                                                                                                                                                |                                 |
|                                                              |                                                                              | vating, LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hitachi I              |           |               |       |        |         |        | Mork Cto         | Grab                      | . Do            | to 0         |                                                                                                        | 210' (est)                                                                                                                                                                                                                              |                                                                                                                                                                | low CC                          |
|                                                              |                                                                              | Operator<br>e Monsaas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Exploratio             |           |               | u(s)  |        |         |        |                  | rt/Completior<br>1/3/2025 | ı Da            | ies          |                                                                                                        | Top of Casing Elev. (NAVD88)                                                                                                                                                                                                            | Depth to Water (Bel                                                                                                                                            |                                 |
|                                                              |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Trac                   | 1         |               | l     | Blov   | ws/foot | · A    |                  | 1/3/2025                  |                 |              |                                                                                                        | NA NA                                                                                                                                                                                                                                   | No water Encou                                                                                                                                                 |                                 |
| Depth<br>(feet)                                              | Elev.<br>(feet)                                                              | Exploration N<br>Completion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Notes and<br>n Details | Sa<br>Typ | mple<br>pe/ID | "     | ater 0 | Content | t (%)● |                  | Tests                     |                 | ater<br>Type |                                                                                                        | Description                                                                                                                                                                                                                             |                                                                                                                                                                | Dept<br>(ft)                    |
| 1 - 2 - 3 - 4 - 5 - 6 - 7 - 10 - 10 - 10 - 10 - 10 - 10 - 10 | -209<br>-208<br>-207<br>-206<br>-205<br>-204<br>-203<br>-202<br>-201<br>-200 | Completion  Backfill excaval one-foc tamped e | n Details              | Sartyi    | mple pe/ID    | "     | ater C | Content | t (%)● |                  | T-probe =6"               |                 |              | SILT W non-platidiamete  V SANDY mottled fine to corganic staining 1-foot-  WE SILT W non-platisand (S | TOPSOIL //ITH SAND (ML); loose, moist, of stic; fine to medium sand; roots er.  //ASHON RECESSIONAL OUT // SILT WITH GRAVEL (ML); loot light brown; non-plastic; fine to coarse, subangular to subrounds and roots up to 1 inch in diam | rWASH ose, very moist, o coarse sand; ded gravel; few neter; iron-oxide at 3 feet bgs.  INE DEPOSITS gray brown; o 0.2-inch-thick fine ing.  POSITS blue gray; | - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 |
|                                                              | 133                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |           |               |       |        |         |        |                  |                           |                 |              |                                                                                                        |                                                                                                                                                                                                                                         |                                                                                                                                                                | ''                              |
| 10-                                                          | <br> -198                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |           |               |       |        | _ ] _   | _      |                  |                           |                 |              |                                                                                                        |                                                                                                                                                                                                                                         |                                                                                                                                                                | - 12                            |
| '2'                                                          | 190                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |           |               |       |        | 7       |        |                  |                           |                 |              |                                                                                                        |                                                                                                                                                                                                                                         |                                                                                                                                                                | - 12                            |
|                                                              |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | m         | S2            |       |        |         |        |                  |                           |                 |              |                                                                                                        |                                                                                                                                                                                                                                         |                                                                                                                                                                |                                 |
| 13-                                                          | 197                                                                          | 1500PS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | $\vdash$  | ] "           |       | -      | -       | -      | +                |                           | Ш               | Ш            | Bottom                                                                                                 | of exploration at 13 ft. bgs.                                                                                                                                                                                                           |                                                                                                                                                                | 13                              |
|                                                              |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |           |               |       |        |         |        |                  |                           |                 |              |                                                                                                        |                                                                                                                                                                                                                                         |                                                                                                                                                                |                                 |
| 3                                                            |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |           |               |       |        |         |        |                  |                           |                 |              | Note: N                                                                                                | o test pit caving observed.                                                                                                                                                                                                             |                                                                                                                                                                |                                 |
| 14-                                                          | 196                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |           |               |       | -      | - † -   | -      | †                |                           |                 |              |                                                                                                        |                                                                                                                                                                                                                                         |                                                                                                                                                                | -14                             |
|                                                              |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |           |               |       |        |         |        |                  |                           |                 |              |                                                                                                        |                                                                                                                                                                                                                                         |                                                                                                                                                                |                                 |
|                                                              |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |           |               |       |        |         |        |                  |                           |                 |              |                                                                                                        |                                                                                                                                                                                                                                         |                                                                                                                                                                |                                 |
| Sample                                                       | CORE                                                                         | gend<br>Grab sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |           | Plast         | Water |        |         |        | Limit<br>er Enco | untered                   |                 |              | of symbo                                                                                               |                                                                                                                                                                                                                                         | Explorati<br>Log<br>ATP-11                                                                                                                                     | l                               |

|                                 | Λ.                                   | cnast                          |             | J          | oh            | nso            | n Pr     | ope                   | rty -                  | AS240                   | 561                                     |                                        |                                              | Geotechnical Ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ploration Lo                                                                  | og                       |
|---------------------------------|--------------------------------------|--------------------------------|-------------|------------|---------------|----------------|----------|-----------------------|------------------------|-------------------------|-----------------------------------------|----------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------|
|                                 |                                      | SPECT                          |             |            |               | Proje          | ct Addre | ess & S               | ite Specifi<br>See Fig | c Location              |                                         |                                        |                                              | Coordinates (Lat,Lon WGS84)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Exploration Nul                                                               |                          |
|                                 |                                      | ontractor                      | Egu         | ipme       | ent           | P              | ouisbo   | , vva,                |                        | ure 2.<br>mpling Metho  | d                                       |                                        |                                              | 47.7252, -122.6276 (est)<br>Ground Surface Elev. (NAVD88)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                               | 2                        |
|                                 | High                                 | Meadows<br>vating, LLC         | Hitachi     | •          |               | 5B             |          |                       |                        | Grab                    |                                         |                                        |                                              | 290' (est)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               |                          |
|                                 |                                      | Operator                       | Exploration |            |               |                |          |                       | Work Sta               | rt/Completion           | n Date                                  | s                                      |                                              | Top of Casing Elev. (NAVD88)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Depth to Water (Be                                                            | elow GS)                 |
|                                 | Dave                                 | e Monsaas                      | Tra         | ckh        | oe            |                |          |                       |                        | 1/3/2025                |                                         |                                        |                                              | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No Water Encou                                                                | untered                  |
|                                 | Elev.<br>(feet)                      | Exploration N<br>Completion    |             | Sai<br>Typ | mple<br>pe/ID | Wat            |          | ent (%)               | Blows/6                | Tests                   | Mate<br>Ty                              | erial<br>/pe                           |                                              | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                               | Depti<br>(ft)            |
| 1 - 2 - 3 - 4 - 5 - 6 - 6 -     | -289<br>-288<br>-287<br>-286<br>-285 | Backfill<br>excavat<br>one-foo |             | Type I ye  | To            |                |          |                       |                        | T-probe =6' T-probe =3' |                                         | pe                                     | SILTY S medium sand; fir gravel; s inches in | TOPSOIL  ITH SAND (ML); loose, moist, sand; roots up to 1 inch in dia  /ASHON RECESSIONAL OF SAND WITH GRAVEL AND CORNER of dense, moist, gray brown; fine to coarse, subangular to subangular to subrounded con diameter.  WITH SILT, GRAVEL, AND CORNIS, gray brown; fine to coarse subangular to subrounded gray brown; fine to coarse subrounded gray | DTWASH OBBLES (SM); ne to coarse ubrounded bbles up to 3  ded cobbles up to 6 | - 1<br>- 2<br>- 3<br>- 4 |
| 8 -                             | -283<br>-282<br>-281                 |                                |             | <b>3</b>   | . 82          |                |          | -                     |                        |                         |                                         |                                        |                                              | ded cobbles up to 8 inches in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               | - 7<br>- 8<br>- 9        |
| 11-                             | -280<br>-279<br>-278                 |                                |             |            |               |                |          |                       |                        |                         | 000000000000000000000000000000000000000 | 10000000000000000000000000000000000000 | dense, r<br>coarse,                          | EL WITH SILT, SAND, AND C<br>noist, gray brown; fine to coars<br>subangular to subrounded gra<br>ded cobbles up to 8 inches in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e sand; fine to<br>el; subangular to                                          | ; 10<br>-11<br>-12       |
| 13-<br>14-                      | -277<br>-276                         |                                |             |            |               |                |          | -                     |                        |                         | 0000                                    |                                        |                                              | of exploration at 13 ft. bgs. test pit caving observed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                               | -13<br>-14               |
| 10-<br>11-<br>12-<br>13-<br>14- | - T                                  | gend<br>Grab sample            |             |            | Plasti        | Water<br>Level |          | l<br>⊣ Liqui<br>lo Wa | d Limit<br>ter Enco    | untered                 | 1                                       |                                        | of symbo                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Explorati<br>Log<br>ATP-12<br>Sheet 1 of                                      | 2                        |

|                                                          | Λ               | cnoct                       |                                                               | J          | ohi           | nso            | n Pro                           | pe     | rty - A                | AS2405        | 61   |               |                     | Geotechnical Exp                                                                                                                              | oloration Lo                          | g               |
|----------------------------------------------------------|-----------------|-----------------------------|---------------------------------------------------------------|------------|---------------|----------------|---------------------------------|--------|------------------------|---------------|------|---------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------|
|                                                          |                 | SPECT                       |                                                               | _          |               | -              |                                 |        | e Specifio<br>See Figu | c Location    |      |               |                     | Coordinates (Lat,Lon WGS84)<br>47.7249, -122.6273 (est)                                                                                       | Exploration Nun                       |                 |
|                                                          |                 | ontractor                   | Equ                                                           | ipme       | ent           | P              | Juisbo,                         | VVA, S |                        | npling Method | 1    |               |                     | Ground Surface Elev. (NAVD88)                                                                                                                 | ATP-1                                 | 3               |
|                                                          | High            | Meadows<br>vating, LLC      | Hitachi                                                       |            |               | В              |                                 |        |                        | Grab          |      |               |                     | 265' (est)                                                                                                                                    |                                       |                 |
|                                                          |                 | perator                     | Exploration                                                   |            |               |                |                                 |        | Work Sta               | rt/Completion | Date | es            |                     | Top of Casing Elev. (NAVD88)                                                                                                                  | Depth to Water (Be                    | low GS)         |
|                                                          | Dave            | Monsaas                     | Tra                                                           | ckho       | ре            |                |                                 |        |                        | 1/3/2025      |      |               |                     | NA                                                                                                                                            | No Water Encou                        | ıntered         |
| Depth<br>(feet)                                          | Elev.<br>(feet) | Exploration N<br>Completion | lotes and<br>Details                                          | Sar<br>Typ | mple<br>be/ID | Wate<br>0 10   | Blows/foo<br>er Conter<br>20 30 | t (%)● | Blows/6'               | Tests         |      | iteria<br>ype |                     | Description                                                                                                                                   |                                       | Depti<br>(ft)   |
| 1 -                                                      | -264            | Backfill                    | ed with                                                       |            |               | 0 10           | 20 30                           | 40 50  | -                      |               |      |               | non-plas<br>diamete |                                                                                                                                               | up to 1 inch in                       | <del>-</del> 1  |
| 2 -                                                      | -263            | one-foo<br>tamped           | ed material in<br>t-thick lifts and<br>with the<br>or bucket. |            | -             | _              |                                 | _      |                        |               |      |               | SILT W              | GHLY WEATHERED GLACIOL<br>DEPOSITS<br>/ITH SAND (ML); medium dense<br>ow plasticity; fine to medium sar<br>nd small roots; iron-oxide stainir | e, moist, light<br>nd; few woody      | <b>-</b> 2      |
| 3 -                                                      | -262            |                             |                                                               | <b>*</b>   | S1            |                |                                 | _      |                        | T-probe =3"   |      |               |                     |                                                                                                                                               |                                       | - 3             |
| 4 -                                                      | -261            |                             |                                                               |            |               | _              |                                 |        | <u> </u><br>           | T-probe =3"   |      |               |                     |                                                                                                                                               |                                       | - 4             |
| 5 -                                                      | -260            |                             |                                                               |            |               |                |                                 |        |                        |               |      |               | NA/E                | ATUEDED OLACIOLACUOTDI                                                                                                                        | NE DEDOCITO                           | - 5             |
| 6 -                                                      | -259            |                             |                                                               |            |               | _              |                                 | -      | _                      |               |      |               | SILT W              | ATHERED GLACIOLACUSTRI<br>/ITH SAND (ML); dense, moist,<br>y; fine to medium sand; 0.1-to 0.<br>P) partings with iron-oxide staini            | light brown; low<br>2-inch-thick fine | - 6             |
| 7 -                                                      | -258            |                             |                                                               | ₩          | S2            | _              |                                 | -      |                        |               |      |               |                     |                                                                                                                                               |                                       | - 7             |
| 8 -                                                      | -257            |                             |                                                               |            | •             | _              |                                 | _      |                        |               |      |               |                     |                                                                                                                                               |                                       | - 8             |
| 9 -                                                      | -256            |                             |                                                               |            |               | _              |                                 | -      |                        |               |      |               |                     |                                                                                                                                               |                                       | - 9             |
| 10-                                                      | -255            |                             |                                                               |            |               |                |                                 |        | -                      |               |      |               |                     |                                                                                                                                               |                                       | -10             |
|                                                          | -254            |                             |                                                               | <b>3</b>   | S3            | _ + -          |                                 | -      | _                      |               |      |               |                     |                                                                                                                                               |                                       | +11             |
| 12-                                                      | -253            |                             |                                                               | H          |               | - † -          | -  -                            | -      | †                      |               | Н    | шЦ            | Bottom              | of exploration at 12 ft. bgs.                                                                                                                 |                                       | +12             |
|                                                          |                 |                             |                                                               |            |               |                |                                 |        |                        |               |      |               |                     | o test pit caving observed.                                                                                                                   |                                       |                 |
| 13-                                                      | -252            |                             |                                                               |            |               | _              |                                 | _      |                        |               |      |               |                     |                                                                                                                                               |                                       | -13             |
| 14-                                                      | -251            |                             |                                                               |            | -             | _              |                                 | _ -    |                        |               |      |               |                     |                                                                                                                                               |                                       | <del>-</del> 14 |
|                                                          | Leg             | jend                        |                                                               |            | Plastic       | c Limit        |                                 | Liquid |                        |               |      |               | See Evel            | oration Log Koy for evaluation                                                                                                                |                                       |                 |
| 9 - 10 - 11 - 12 - 13 - 14 - 14 - 14 - 14 - 14 - 14 - 14 |                 | Grab sample                 | -                                                             |            |               | Water<br>Level | No                              | Wate   | er Enco                | untered       |      |               | of symbo            |                                                                                                                                               | Explorati<br>Log<br>ATP-13            | 3               |

|                                 | Λ               | cnoc                           | 4                                                               | Jo             | hnsc        | n Pro                   | pe      | rty - /                | AS240                | 561             |                              | Geotechnical Exp                                                                                                                                          | oloration Log                                          | g          |
|---------------------------------|-----------------|--------------------------------|-----------------------------------------------------------------|----------------|-------------|-------------------------|---------|------------------------|----------------------|-----------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------|
|                                 | Co              | Spec                           |                                                                 | _              | Proje       | ct Addres<br>oulsbo, '  | s & Sit | e Specific<br>See Figu | Location<br>ure 2.   |                 |                              | Coordinates (Lat,Lon WGS84)<br>47.7244, -122.6267 (est)                                                                                                   | Exploration Number ATP-14                              |            |
|                                 |                 | ontractor<br>Meadows           | · · · · · ·                                                     | ipment         |             |                         |         | San                    | npling Metho         | od              |                              | Ground Surface Elev. (NAVD88)                                                                                                                             | AIP-14                                                 | 4          |
|                                 |                 | vating, LLC<br>Operator        | Hitachi<br>Exploration                                          |                |             |                         |         | Work Sta               | Grab<br>rt/Completio | n Dates         |                              | 260' (est) Top of Casing Elev. (NAVD88)                                                                                                                   | Depth to Water (Belo                                   | nw GS      |
|                                 |                 | e Monsaas                      |                                                                 | ckhoe          | . ,         |                         |         |                        | 1/3/2025             | i Dales         |                              | NA                                                                                                                                                        | 2' (Seep)                                              | JW OO,     |
|                                 | Elev.<br>(feet) |                                | tion Notes and<br>letion Details                                | Samp<br>Type/I | nl wa       | Blows/foo<br>ter Conten | t (%)   | Blows/6"               | Tests                | Materia<br>Type | al                           | Description                                                                                                                                               |                                                        | Dep        |
| 1 -                             | -259            | exi<br>on                      | ickfilled with<br>cavated material in<br>e-foot-thick lifts and |                |             | 20 30                   | 40 50   | )<br> <br>             |                      |                 | SILT W<br>medium             | TOPSOIL  /ITH SAND (ML); loose, moist, of sand; roots up to 1 inch in diam                                                                                | dark brown; fine to<br>neter.                          | - 1        |
| 2 -                             | -258            | exi                            | nped with the<br>cavator bucket.<br>1/3/2025                    |                |             |                         |         | _                      |                      |                 | medium<br>coarse,<br>subroun | VASHON RECESSIONAL OF<br>SAND WITH GRAVEL AND CO<br>dense, moist, brown; fine to co<br>subangular to subrounded grave<br>ded cobbles up to 6 inches in di | BBLES (SM);<br>arse sand; fine to<br>el; subangular to | - 2        |
| 3 -                             | -257            |                                |                                                                 |                |             |                         | -       |                        |                      |                 | staining                     |                                                                                                                                                           |                                                        | - 3        |
|                                 | -256<br>-255    |                                |                                                                 | <b>%</b>       | 5           |                         |         |                        | DCPT<br>=7,14,19     |                 | Becom                        | nes gray brown and without iron-                                                                                                                          | oxide staining.                                        | + 4<br>+ 5 |
|                                 | 254             |                                |                                                                 |                |             |                         | _       |                        |                      |                 |                              |                                                                                                                                                           |                                                        | - 6        |
|                                 |                 |                                |                                                                 |                |             |                         |         |                        |                      |                 | -<br> -<br> -                |                                                                                                                                                           |                                                        |            |
|                                 | -253<br>-252    |                                |                                                                 | <b>8</b>       | 5           |                         |         |                        |                      |                 | dense, \coarse,              | WITH SILT, GRAVEL, AND CC<br>very moist, gray brown; fine to co<br>subangular to subrounded grave<br>ided cobbles up to 5 inches in di                    | parse sand; fine to                                    | + 7<br>- 8 |
| 9 -                             | -251            |                                |                                                                 |                |             |                         |         |                        |                      |                 |                              |                                                                                                                                                           |                                                        | <b>-</b> 9 |
| 10-                             | -250            |                                |                                                                 |                |             |                         |         | _                      |                      |                 |                              |                                                                                                                                                           |                                                        | -10        |
| 11-                             | -249            |                                |                                                                 | <b>B</b> 5     | 3           |                         | _       | _                      |                      |                 |                              |                                                                                                                                                           |                                                        | -11        |
| 12-                             | 248             | 2020                           |                                                                 |                | -           |                         | -       |                        |                      |                 | Bottom                       | of exploration at 12 ft. bgs.                                                                                                                             |                                                        | 12         |
|                                 |                 |                                |                                                                 |                |             |                         |         |                        |                      |                 | Note: No                     | o test pit caving observed.                                                                                                                               |                                                        |            |
| 13-                             | 247             |                                |                                                                 |                |             | _                       | -       |                        |                      |                 |                              |                                                                                                                                                           |                                                        | -13        |
| 14-                             | -246            |                                |                                                                 |                |             |                         | -   -   |                        |                      |                 |                              |                                                                                                                                                           |                                                        | -14        |
| 10-<br>11-<br>12-<br>13-<br>14- | 1000            | <br>g <b>end</b><br>Grab sampl | e                                                               | Pla            | Mater Fevel | 9 Wa                    | Liquid  | Limit<br>evel (Se      | eepage)              |                 | of symbo                     |                                                                                                                                                           | Exploration Log ATP-14 Sheet 1 of 1                    | on         |

# **APPENDIX B**

**Geotechnical Laboratory Testing Results** 

# B. Geotechnical Laboratory Testing Results

Geotechnical laboratory tests were conducted on selected soil samples collected during the field exploration program. The tests performed, and the procedures followed are outlined below. The laboratory tests were conducted in general accordance with appropriate ASTM International (ASTM) test methods and were conducted by Hayre McElroy & Associates, LLC.

# **B.1. Moisture Content Determination, MC**

The five samples submitted for particle-size analyses and the five samples submitted for fines content determination were analyzed for water content by the ASTM D 2216 test method. This test method allows for the laboratory determination of the moisture (water) content of a soil sample by measuring and recording the mass of a sample before and then after drying. Test results are illustrated graphically on the logs in Appendix A.

# **B.2.** Particle-Size Analyses, PF

Two select soil samples were submitted for particle-size with #200 sieve analysis in general accordance with ASTM D-2216, D-2419, D-4318, and D-5821 methods. This test method allows for the laboratory determination of the percent of the size fractions (by weight) of coarse-grained soil and the percent of fines in a soil sample, as well as the grain size diameter percentages of the material. The result of the test is presented in this appendix as curves depicting the percent finer by weight versus particle size.

# **B.3.** Fines Content Determination, FC

The fines content was determined on three selected soil samples in general accordance with ASTM D1140. The results of the tests are shown in the table below, on the exploration logs, and tabulated in this appendix.

Project name: Johnson Property Project # AS240561

# 8883

Please send report to: alison.dennsion@aspectconsulting.com chelsea.bush@aspectconsulting.com

| Laboratory Testing Schedule |                                            |                    |          |  |  |
|-----------------------------|--------------------------------------------|--------------------|----------|--|--|
| of the last                 | Lab Test Procedure (ASTM)                  | Unit pricing from: | HMA 2024 |  |  |
| PS                          | Sieve analysis and #200 wash (includes MC) |                    | \$120    |  |  |
| FC                          | minus No. 200 wash (D1140)                 |                    | \$90     |  |  |

| Exploration                | Sample | Depth (ft.)       | Lab Tests | Line Total (\$)   | Test Notes                            |                            |
|----------------------------|--------|-------------------|-----------|-------------------|---------------------------------------|----------------------------|
| ATP-01                     | S-2    | 2                 | FC        | 90                | Include Moisture Content              |                            |
| ATP-03                     | S-2    | 12                | FC        | 90                | Include Moisture Content              |                            |
| ATP-01<br>ATP-03<br>ATP-10 | S-2    | 10                | FC        | 90                | Include Moisture Content              |                            |
|                            | S1     | 4                 | PS        | 120               | Include Moisture Content              |                            |
| ATP-09                     | S1     | 4                 | PS        | 120               | Include Moisture Content              |                            |
|                            |        |                   |           |                   |                                       |                            |
|                            |        |                   |           |                   |                                       |                            |
| Test                       |        | No. of samples pe | er test   | Subtotal          | ETHER SUPERIOR                        | CONTRACTOR OF THE PARTY OF |
| Test                       |        | No. of samples pe | er test   | Subtotal<br>\$240 |                                       |                            |
| Test<br>PS<br>FC           |        | No. of samples po | er test   |                   | RDER SUBMITTED ON:                    | 1/14/20                    |
| PS                         |        | 2                 | er test   | \$240             | RDER SUBMITTED ON:  ULTS REQUESTED BY | 1/14/20                    |



# Moisture Content ASTM D-2216

| HMA Project Number: | 08-175           | Received Date: | 01/15/25 |
|---------------------|------------------|----------------|----------|
| Project Name:       | Johnson Property | Start Date:    | 01/15/25 |
| Description:        | Soil             | Finish Date:   | 01/16/25 |
| Lab Number:         | 8883             | Technician:    | HL       |

| Lab #                   | Tare ID | Boring      | Sample # | Depth (ft) | Weight of Moist<br>Soil + Tare<br>(g) | Weight of Dry<br>Soil + Tare<br>(g) | Tare Weight<br>(g) | Weight<br>of Water<br>(g) | Moisture<br>Content<br>(%) |
|-------------------------|---------|-------------|----------|------------|---------------------------------------|-------------------------------------|--------------------|---------------------------|----------------------------|
| 8883-A                  | PDX-01  | ATP-01      | S-2      | 2'         | 698.54                                | 520.61                              | 12.56              | 177.93                    | 35.0                       |
| 8883-B                  | NY-01   | ATP-03      | S-2      | 12'        | 593.03                                | 469.51                              | 12.58              | 123.52                    | 27.0                       |
| 8883-C                  | SEA-01  | ATP-10      | S-2      | 10'        | 587.00                                | 470.01                              | 12.56              | 116.99                    | 25.6                       |
| 8883-D                  | SF-01   | ATP-08      | S1       | 4'         | 1785.45                               | 1707.42                             | 12.59              | 78.03                     | 4.6                        |
| 8883-E                  | ATL-01  | ATP-09      | S1       | 4'         | 958.82                                | 739.57                              | 12.43              | 219.25                    | 30.2                       |
|                         |         |             |          |            |                                       |                                     |                    |                           |                            |
| Oven No.<br>B23ERS-0026 |         | Calibration |          | tion Due   | <b>Balance</b> 545249                 | In Calibration<br>8/9/2025          |                    | ration Due                |                            |



## Fines Content ASTM C117

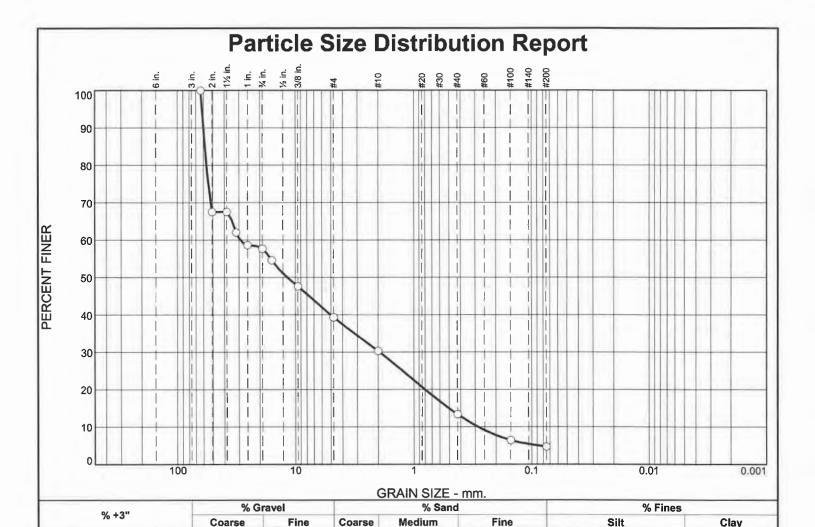
 Project Number:
 08-175

 Project Name:
 Johnson Property

 Sample ID:
 Soil

 Spec:
 FC

 HMA LAB NO
 8883


 Technician:
 HL

 Received:
 01/15/25

 Start Date:
 01/16/25

 Finish Date:
 01/17/25

| Lab Number  | Boring | Sample        | Depth<br>(ft) | Tare #     | Tare Weight<br>(g) | Tare+Dry<br>Weight Before<br>Wash<br>(g) | Tare+Dry Weight<br>After Wash<br>(g) | % Retained | % PASSING |
|-------------|--------|---------------|---------------|------------|--------------------|------------------------------------------|--------------------------------------|------------|-----------|
| 8883-A      | ATP-01 | S-2           | 2'            | PDX-01     | 12.56              | 520.61                                   | 139.42                               | 24.97      | 75.03     |
| 8883-B      | ATP-03 | S-2           | 12'           | NY-01      | 12.58              | 469.51                                   | 72.05                                | 13.02      | 86.98     |
| 8883-C      | ATP-10 | S-2           | 10'           | SEA-01     | 12.56              | 470.01                                   | 82.64                                | 15.32      | 84.68     |
|             |        |               |               |            |                    | 1                                        |                                      |            |           |
| Oven No.    | Oven I | n-Calibration | Calib         | ration Due | Balance            |                                          | In Calibration                       | Calibra    | tion Due  |
| B23ERS-0026 | 3      | 3/9/2024      | Aug           | ust 2025   | 545249             |                                          | 8/9/2025                             | Augus      | st 2025   |



|        | PERCENT | SPEC.*  | PASS?  |
|--------|---------|---------|--------|
| SIZE   | FINER   | PERCENT | (X=NO) |
| 2 1/2" | 100.0   |         |        |
| 2"     | 67.5    |         |        |
| 1 1/2" | 67.5    |         |        |
| 1 1/4" | 62.0    |         |        |
| 1"     | 58.7    |         |        |
| 3/4"   | 57.7    |         |        |
| 5/8"   | 54.6    |         |        |
| 3/8"   | 47.6    |         |        |
| #4     | 39.3    |         |        |
| #10    | 30.3    |         |        |
| #40    | 13.4    |         |        |
| #100   | 6.5     |         |        |
| #200   | 4.7     |         |        |

Coarse

42.3

Fine

18.4

Coarse

9.0

16.9

| Poorly graded GR                                                                   | Soil Description  AVEL with sand                 |                                                                                |
|------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------|
| , g                                                                                |                                                  |                                                                                |
| PL=                                                                                | Atterberg Limits<br>LL=                          | PI=                                                                            |
| D <sub>90</sub> = 60.0814<br>D <sub>50</sub> = 11.6632<br>D <sub>10</sub> = 0.2821 | Coefficients D85= 58.3581 D30= 1.9453 Cu= 103.90 | D <sub>60</sub> = 29.3048<br>D <sub>15</sub> = 0.5019<br>C <sub>c</sub> = 0.46 |
| USCS= GP                                                                           | Classification<br>AASHTC                         | )=                                                                             |
| MC - 4.6%                                                                          | Remarks                                          |                                                                                |
|                                                                                    |                                                  |                                                                                |

**Fine** 

8.7

(no specification provided)

Source of Sample: ATP-08 Sample Number:  $\mathrm{S}1$ 

0.0

Depth: 4 ft.

**Date:** 01/17/2025

Clay

4.7

Hayre McElroy & Associates, LLC

Client: Aspect Consulting

Project: Johnson Property

Project #AS240561 Project No: Lab #8883

Redmond, WA

**Figure** 

#### **GRAIN SIZE DISTRIBUTION TEST DATA**

1/17/2025

**Client:** Aspect Consulting **Project**: Johnson Property Project #AS240561

**Project Number:** Lab #8883

Location: ATP-08

Depth: 4 ft. Sample Number: S1

Material Description: Poorly graded GRAVEL with sand

Date: 01/17/2025

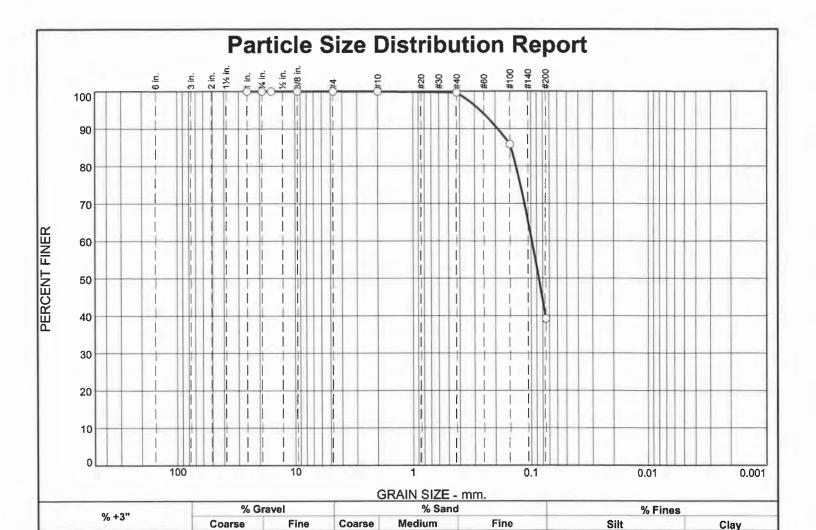
**USCS** Classification: GP Testing Remarks: MC - 4.6%

Checked by: JM Tested by: HL

#### Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 1621.20 Tare Wt. = 12.59

Minus #200 from wash = 5.1%


| Dry<br>Sample<br>and Tare<br>(grams) | Tare<br>(grams) | Cumulative<br>Pan<br>Tare Weight<br>(grams) | Sieve<br>Opening<br>Size | Cumulative<br>Weight<br>Retained<br>(grams) | Percent<br>Finer |
|--------------------------------------|-----------------|---------------------------------------------|--------------------------|---------------------------------------------|------------------|
| 1707.47                              | 12.59           | 0.00                                        | 2 1/2"                   | 0.00                                        | 100.0            |
|                                      |                 |                                             | 2"                       | 550.40                                      | 67.5             |
|                                      |                 |                                             | 1 1/2"                   | 550.40                                      | 67.5             |
|                                      |                 |                                             | 1 1/4"                   | 643.50                                      | 62.0             |
|                                      |                 |                                             | 1"                       | 700.80                                      | 58.7             |
|                                      |                 |                                             | 3/4"                     | 717.60                                      | 57.7             |
|                                      |                 |                                             | 5/8"                     | 769.70                                      | 54.6             |
|                                      |                 |                                             | 3/8"                     | 888.10                                      | 47.6             |
|                                      |                 |                                             | #4                       | 1028.60                                     | 39.3             |
|                                      |                 |                                             | #10                      | 1181.40                                     | 30.3             |
|                                      |                 |                                             | #40                      | 1467.80                                     | 13.4             |
|                                      |                 |                                             | #100                     | 1585.40                                     | 6.5              |
|                                      |                 |                                             | #200                     | 1615.10                                     | 4.7              |

## Fractional Components

| Oakkiaa | Gravel |      |       | Sand   |        |      |       | Fines |      |       |
|---------|--------|------|-------|--------|--------|------|-------|-------|------|-------|
| Cobbles | Coarse | Fine | Total | Coarse | Medium | Fine | Total | Silt  | Clay | Total |
| 0.0     | 42.3   | 18.4 | 60.7  | 9.0    | 16.9   | 8.7  | 34.6  |       |      | 4.7   |

| D <sub>5</sub> | D <sub>10</sub> | D <sub>15</sub> | D <sub>20</sub> | D <sub>30</sub> | D <sub>40</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>80</sub> | D <sub>85</sub> | D <sub>90</sub> | D <sub>95</sub> |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 0.0875         | 0.2821          | 0.5019          | 0.8015          | 1.9453          | 5.0463          | 11.6632         | 29.3048         | 56.5651         | 58.3581         | 60.0814         | 61.7833         |

| Fineness<br>Modulus | Cu     | C <sub>C</sub> |
|---------------------|--------|----------------|
| 5.98                | 103.90 | 0.46           |



0.3

| SIEVE | PERCENT | SPEC.*  | PASS?  |
|-------|---------|---------|--------|
| SIZE  | FINER   | PERCENT | (X=NO) |
| 1"    | 100.0   |         |        |
| 3/4"  | 100.0   |         |        |
| 5/8"  | 100.0   |         |        |
| 3/8"  | 100.0   |         |        |
| #4    | 100.0   |         |        |
| #10   | 100.0   |         |        |
| #40   | 99.7    |         |        |
| #100  | 85.9    |         |        |
| #200  | 39.2    |         |        |
|       | 1 (     |         |        |
|       |         |         |        |
|       |         |         |        |
|       |         |         |        |
|       |         |         |        |
|       |         |         |        |

0.0

|                                                                           | Soil Description         |                                       |
|---------------------------------------------------------------------------|--------------------------|---------------------------------------|
| Silty SAND                                                                |                          |                                       |
|                                                                           | Atterberg Limits         |                                       |
| PL=                                                                       | LL=                      | PI=                                   |
| D <sub>90</sub> = 0.1905<br>D <sub>50</sub> = 0.0862<br>D <sub>10</sub> = | Coefficients D85= 0.1472 | D <sub>60</sub> = 0.0984              |
| D <sub>10</sub> = 0.0802                                                  | C <sub>u</sub> =         | D <sub>15</sub> =<br>C <sub>c</sub> = |
| USCS= SM                                                                  | Classification<br>AASHTO | )=                                    |
|                                                                           | Remarks                  |                                       |
| MC - 30.2%                                                                |                          |                                       |

(no specification provided)

Source of Sample: ATP-09 Sample Number:  $\mathrm{S}1$ 

0.0

Depth: 4 ft.

0.0

0.0

Date: 01/17/2025

Clay

39.2

Hayre McElroy & Associates, LLC

Redmond, WA

Client: Aspect Consulting

**Project:** Johnson Property

Project #AS240561

Project No: Lab #8883 **Figure** 

60.5

Tested By: HL

Checked By: JM

#### 1/17/2025

#### **GRAIN SIZE DISTRIBUTION TEST DATA**

Client: Aspect Consulting
Project: Johnson Property
Project #AS240561

Project Number: Lab #8883

Location: ATP-09

Depth: 4 ft. Sample Number: S1

Material Description: Silty SAND

Date: 01/17/2025

 $\begin{tabular}{ll} \textbf{USCS Classification: } SM \\ \textbf{Testing Remarks: } MC - 30.2\% \\ \end{tabular}$ 

Tested by: HL Checked by: JM

#### Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 635.31

**Tare Wt. =** 12.43

Minus #200 from wash = 14.3%

| Dry<br>Sample<br>and Tare<br>(grams) | Tare<br>(grams) | Cumulative<br>Pan<br>Tare Weight<br>(grams) | Sieve<br>Opening<br>Size | Cumulative<br>Weight<br>Retained<br>(grams) | Percent<br>Finer |
|--------------------------------------|-----------------|---------------------------------------------|--------------------------|---------------------------------------------|------------------|
| 739.57                               | 12.43           | 0.00                                        | 1"                       | 0.00                                        | 100.0            |
|                                      |                 |                                             | 3/4"                     | 0.00                                        | 100.0            |
|                                      |                 |                                             | 5/8"                     | 0.00                                        | 100.0            |
|                                      |                 |                                             | 3/8"                     | 0.00                                        | 100.0            |
|                                      |                 |                                             | #4                       | 0.00                                        | 100.0            |
|                                      |                 |                                             | #10                      | 0.30                                        | 100.0            |
|                                      |                 |                                             | #40                      | 2.40                                        | 99.7             |
|                                      |                 |                                             | #100                     | 102.80                                      | 85.9             |
|                                      |                 |                                             | #200                     | 442.00                                      | 39.2             |

#### **Fractional Components**

| Cabbles |        | Gravel     |     |        | Sa     | nd   | ,     | Fines |      |       |  |
|---------|--------|------------|-----|--------|--------|------|-------|-------|------|-------|--|
| Cobbles | Coarse | Fine Total |     | Coarse | Medium | Fine | Total | Silt  | Clay | Total |  |
| 0.0     | 0.0    | 0.0        | 0.0 | 0.0    | 0.3    | 60.5 | 60.8  |       |      | 39.2  |  |

| D <sub>5</sub> | D <sub>10</sub> | D <sub>15</sub> | D <sub>20</sub> | D <sub>30</sub> | D <sub>40</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>80</sub> | D <sub>85</sub> | D <sub>90</sub> | D <sub>95</sub> |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                |                 |                 |                 |                 | 0.0758          | 0.0862          | 0.0984          | 0.1336          | 0.1472          | 0.1905          | 0.2700          |

Fineness Modulus 0.18

# **APPENDIX C**

**Report Limitations and Guidelines** for Use

# REPORT LIMITATIONS AND GUIDELINES FOR USE

## **Geoscience is Not Exact**

The geoscience practices (geotechnical engineering, geology, and environmental science) are far less exact than other engineering and natural science disciplines. It is important to recognize this limitation in evaluating the content of the report. If you are unclear how these "Report Limitations and Guidelines for Use" apply to your project or property, you should contact Aspect Consulting (Aspect).

# This Report and Project-Specific Factors

Aspect's services are designed to meet the specific needs of our clients. Aspect has performed the services in general accordance with our agreement (the Agreement) with the Client (defined under the Limitations section of this project's work product). This report has been prepared for the exclusive use of the Client. This report should not be applied for any purpose or project except the purpose described in the Agreement.

Aspect considered many unique, project-specific factors when establishing the Scope of Work for this project and report. You should not rely on this report if it was:

- Not prepared for you;
- Not prepared for the specific purpose identified in the Agreement;
- Not prepared for the specific subject property assessed; or
- Completed before important changes occurred concerning the subject property, project, or governmental regulatory actions.

If changes are made to the project or subject property after the date of this report, Aspect should be retained to assess the impact of the changes with respect to the conclusions contained in the report.

# **Reliance Conditions for Third Parties**

This report was prepared for the exclusive use of the Client. No other party may rely on the product of our services unless we agree in advance to such reliance in writing. This is to provide our firm with reasonable protection against liability claims by third parties with whom there would otherwise be no contractual limitations. Within the limitations of scope, schedule, and budget, our services have been executed in accordance with our Agreement with the Client and recognized geoscience practices in the same locality and involving similar conditions at the time this report was prepared.

# **Property Conditions Change Over Time**

This report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by events such as a change in property use or occupancy, or by natural events, such as floods,

earthquakes, slope instability, or groundwater fluctuations. If any of the described events may have occurred following the issuance of the report, you should contact Aspect so that we may evaluate whether changed conditions affect the continued reliability or applicability of our conclusions and recommendations.

# Geotechnical, Geologic, and Environmental Reports Are Not Interchangeable

The equipment, techniques, and personnel used to perform a geotechnical or geologic study differ significantly from those used to perform an environmental study and vice versa. For that reason, a geotechnical engineering or geologic report does not usually address any environmental findings, conclusions, or recommendations (e.g., about the likelihood of encountering underground storage tanks or regulated contaminants). Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding the subject property.

We appreciate the opportunity to perform these services. If you have any questions please contact the Aspect Project Manager for this project.



June 16, 2025

Montebanc Management, LLC Attn: Chip McBroom and Paul DeVenzio 400 NW Gilman Blvd., #2781 Issaquah, Washington 98027

#### Re: Geotechnical Engineering Report - Addendum

Johnson Residential Development Kitsap County Parcel Numbers: 242601-3-018-2001, 242601-3-005-2006, and 242601-3-019-2000 Poulsbo, Washington Project No. AS240561-03

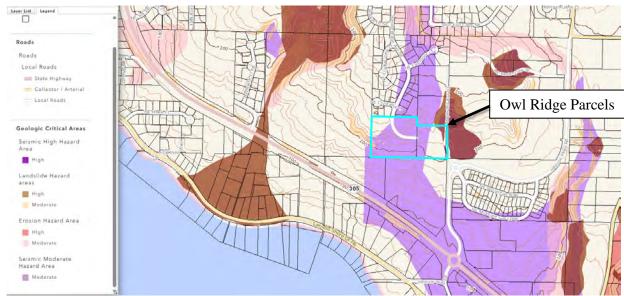
Dear Mr. McBroom and Mr. DeVenzio:

Aspect Consulting, a Geosyntec company (Aspect), prepared a Geotechnical Engineering Report dated February 14, 2025 (Aspect, 2025), documenting our geologic hazard assessment and geotechnical engineering evaluation for the proposed residential development (Project) on three parcels north of State Route 305 in Poulsbo, Washington, known as Kitsap County (County) parcel numbers 232601-4-001-2009, 242601-3-003- 2008, and 252601-2-047-2007 (collectively the Site).

We understand you are now contracted to purchase three additional County parcels: 242601-3-018-2001, 242601-3-005-2006, and 242601-3-019-2000, which collectively cover about 8 acres. These parcels are referred to as the Owl Ridge Parcels. Our additional scope of work included a geologic reconnaissance, the advancement of additional test pits to understand the subsurface soil and groundwater conditions, laboratory testing, and the associated analysis and this addendum.

# **Project Understanding**

Current project plans for the Owl Ridge Parcels include about 26 residential parcels, a connector roadway from Sunrise Ridge Avenue NE from the northern property line near the northwest corner that will extend through the properties to the southern property line near the southeast corner, and associated utilities and infrastructure (Graphic 1; ESM, 2025).




Graphic 1. Current Project Plans (ESM, 2025)

The County's geologic hazard map designates four hazards on the Owl Ridge Parcels (Graphic 2 below):

- A high landslide hazard, defined as steeper than 30 percent slopes, is present along the east side of the parcels.
- A limited area of moderate landslide hazard, defined as slopes between 15 to 30 percent is along the west property line, extending onto the previously evaluated property.
- A moderate seismic hazard covers a large area through the middle and east side of the parcels.

The City's standard buffer requirement is 25 feet from the top, toe, and all edges of geologically hazardous areas and areas of geologic concern, unless otherwise specified. In our experience, a geotechnical report will be required by the City for the Project.



Graphic 2. County Geologic Hazards Map (County, 2025)

# **Existing Conditions**

The Owl Ridge Parcels consists of three undeveloped parcels. The west parcel (242601-3-018-2001) is approximately 5 acres and measures about 440 feet north to south and 490 feet east to west, with Sunrise Ridge Avenue NE to the north. The central parcel (242601-3-005-2006) is approximately 2.5 acres and measures approximately 310 feet north to south and 345 feet east to west. The eastern parcel (242601-3-019-2000) is about 0.12 acres and measures approximately 140 feet north to south and 15 feet east-to-west (County, 2025).

The central parcel is developed with a one-story, 577-square-foot residence built in 1935 with a gravel access driveway from the south, near the central area of the parcel (Photograph 1). A stormwater pond is located in the southeast corner of the central parcel (Photograph 2).

An asphalt paved roadway (Sunrise Ridge Avenue NE) cuts through the parcels and other gravel and dirt roadways cross throughout the parcels. A gravel roadway along the southern boundary provides access to a residential property to the west while another roadway provides access along the eastern boundary to the north, Maple Hill Avenue NE.

#### **Topography**

The ground surface of the Owl Ridge Parcels slopes down to the south with about 90 feet of elevation loss and an average slope of about 27 percent (15 degrees).

#### Drainage

Water was observed in the stormwater pond. Outside the pond, no water seepage, springs, flowing water, evidence of past standing or flowing water, hydrophilic vegetation, or saturated soils were observed.



**Photograph 1.** Existing Residence on central parcel, view to the northwest, on April 17, 2025.



**Photograph 2.** Stormwater pond in southeast corner of central parcel, view to the east, on April 17, 2025.

#### Vegetation

Vegetation in the areas of more recent development (i.e., the roadways, stormwater pond, and residence), consists largely of alders, maples, scotch broom, grasses, and woody shrubs. Other areas contain more mature evergreens up to 40 inches diameter at breast height, and forest undergrowth of sword ferns and woody underbrush.

# **Subsurface Conditions**

The geologic map (Haugerud and Troost, 2011) indicates the center of the Owl Ridge Parcels is underlain by Vashon Esperance Sand Member (Qve) with Vashon till (Qvt) to both the east and west. Landslide deposits (Qls) are mapped along the eastern property line and are described as a diamict of sand, gravel, silt, and soil transported in deep-seated landslides.

The Esperance Sand Member was an advance outwash material deposited in broad low areas and fluvial channels in front of the advancing 3,000-foot-tall Cordilleran Glacier icesheet at the end of the Vashon Stade of the Fraser Glaciation (about 13,000 to 16,000 years ago) and is generally described as a mostly quartzofeldspathic fine to medium sand, locally pebbly or with small amounts of gravel or silt with a dense/hard configuration. Vashon till was deposited directly under the glacier and is described as a diamict of dense to very dense silt, sand, gravel, cobbles, and boulders.

Although not mapped, human-placed fill would be expected due to the roadway and stormwater pond constructed on the parcels. Fill is human-placed materials that is often found in developed areas and can be highly variable.

# Stratigraphy

On April 17, 2025, we oversaw the advancement of eight (8) test pits, designated ATP-15 through ATP-22, which terminated between 6 and 11 feet below ground surface (bgs). Detailed descriptions of the subsurface conditions and soil characteristics are provided in the exploration logs in Appendix A. The locations of the test pits are shown on Figure 2.

Below surficial topsoil, we encountered Vashon recessional outwash (Qgo) in test pit ATP-17 in the northwest corner of the Owl Ridge Parcels. Recessional outwash is a fluvial deposit laid down during the retreat of the Vashon-age glacier. The geologic map shows this unit about 2,300 feet northwest, in a lower lying area (Polenz et al, 2013). We did encounter this unit on the western adjacent parcel somewhat nearby to this location.

Two of the test pits, APT-18 and ATP-21, encountered Vashon till, in agreement with the geologic map. The remaining five test pits, ATP-15, ATP-16, ATP-19, ATP-20, and ATP-22, encountered pre-Vashon glaciolacustrine deposits with varying degrees of weathering. A geologic map presenting inferred geologic contacts based on our subsurface investigation is presented as Figure 3. A summary table of the units encountered at the respective depths is presented in Table 1 following the descriptions.

<u>Topsoil</u>: Topsoil refers to a unit that contains a high percentage of organics. We encountered topsoil at the ground surface in all of the test pits, extending from 0.5 to 1.8 feet bgs. The topsoil consisted of loose<sup>1</sup>, dark brown silt (ML)<sup>2</sup> with sand, abundant wood debris, and roots.

<u>Vashon till</u>: Underlying the topsoil, Vashon till was encountered in two of the explorations, ATP-18 and ATP-22, and both test pits were terminated in this unit. It consisted of very dense, gray, silty sand (ML) with subrounded to faceted gravels socketed into the diamict structure.

<u>Pre-Vashon Fines: Glaciolacustrine Deposits</u>: Underlying the topsoil, glaciolacustrine deposits were encountered in the remaining five test pits to the depths explored. We interpreted the glaciolacustrine deposits to be part of the pre-Vashon silt (Qpf), in agreement with geologic mapped material in the ravine in the northwest corner of the Owl Ridge Parcels. The deposit consisted of medium dense to dense, sand with silt (SM) and silt with sand (SM) with varied degrees of weathering.

The upper horizon of the deposit has been highly weathered, underlain by a slightly less weathered horizon, and lastly underlain by a relatively unweathered horizon. The amount of weathering decreases with depth while the density of the material increases. The highly-weathered glaciolacustrine deposits are loose, moist to very moist, brown silt with sand (ML) with iron-oxide staining and few root fragments. The weathered glaciolacustrine deposits are dense, moist, gray brown silt with sand (ML) with 0.1- to 0.2-inch-thick iron-oxide stained sand partings. The relatively unweathered glaciolacustrine deposits are very dense, blue gray silt with sand (ML) with 0.1- to 0.2-inch-thick sand partings.

<sup>&</sup>lt;sup>1</sup> Relative density was assessed at various depth intervals in the explorations qualitatively with a 0.5-inch-diameter, pointed steel T-probe, and qualitatively with a dynamic cone penetrometer test (DCPT).

<sup>&</sup>lt;sup>2</sup> Soils were classified per the Unified Soil Classification System (USCS) in general accordance with ASTM International (ASTM) D2488, *Standard Practice for Description and Identification of Soils* (ASTM, 2022).

Depth Depth of Total of Vashon Depth of Highly-Depth of Depth of Topsoil Recessional Depth of Weathered Weathered Glaciolacustrine Depth **Exploration Vashon Till** Glaciolacustrine Glaciolacustrine (feet Outwash **Deposits** (feet Number bgs) (feet bgs) (feet bgs) (feet bgs) (feet bgs) (feet bgs) bgs) ATP-15 0-1 NE NE 1-4 4-7 7-11 11 ATP-16 0-0.5 NE NE 0.5 - 22-5 5-9.5 9.5 ATP-17 0-0.5 0.5-9.5 NE NE NE NE 9.5 ATP-18 0-1 1-3 3-5 NE NE NE 5 ATP-19 0-0.5 9 NE NE 0.5-2 2-3.5 3.5-9 ATP-20 0-0.5 NE NE 0.5-2 2-3.8 3.8-8 8 ATP-21 ΝE 0-1 1-6 NE NE NE 6 ATP-22 0-1.8 NE NE 1.8-3 3-8 8-8.5 8.5

Table 1. Geologic Units Encountered

Notes:

1. NE - not encountered

#### Groundwater

We encountered groundwater seepage from the sidewalls about 2 to 3 feet bgs in two test pits, ATP-15 and ATP-22. We interpreted the observed seepage to be perched groundwater and not representative of a regional groundwater table. A perched groundwater condition occurs when surface water percolates into the shallow subsurface and collects on relatively impermeable materials. In this case, the topsoil and highly-weathered glaciolacustrine units are considered low permeability units, while the glaciolacustrine deposits are essentially impermeable. Sand partings in the upper highly-weathered and weathered glaciolacustrine deposits allow water to move through the upper units and perch on top of the glaciolacustrine deposits.

#### Laboratory Testing Results

Geotechnical laboratory tests were conducted on six selected samples to characterize engineering and index properties. Four grain-size distributions and two fines content (particles passing the No. 200 sieve) analyses were completed, and the natural moisture contents of these soil samples were also determined and are presented on the test pit logs. The test methodology and results of all the laboratory testing are presented in Appendix B along with a summary table including the geologic unit classification.

**Exploration** Sample Depth Percent Percent Percent **Moisture** USCS<sup>2</sup> **Geologic Unit** Number Gravel **Fines** Content (feet bgs) Sand (percent) ATP-16 2 1 97 8 SP-SM 12.6 Highly Weathered Glaciolacustrine 5  $NT^1$  $NT^1$ ATP-16 66 21.5 ML Weathered Glaciolacustrine Deposits 5 45 7 **GP-GM** ATP-17 48 3.8 Vashon Recessional Outwash ATP-18 4 14 56 30 7.9 SM Vashon Till 3  $NT^1$  $NT^1$ ATP-19 89 29.6 ML Weathered Glaciolacustrine 5 ATP-21 13 28 59 41.1 ML Vashon Till

**Table 2. Summary of Geotechnical Laboratory Test Results** 

#### Notes:

- 1. NT Not tested
- 2. USCS Unified Soils Classification System

# Landslide Hazards

The results of our review of publicly available resources are as follows:

- The Owl Ridge Parcels is mapped as "Stable," and described as slopes that generally rise less than 15 percent in grade and are underlain by stable material (Ecology, 1979).
- Analysis using LiDAR maps did not identify this slope as a landslide (McKenna, et al., 2008).
- The geomorphic map indicates a landslide (ls) along the eastern boundary of the Owl Ridge Parcels, meaning there is evidence of a deep-seated landslide as indicated by uphill scarps, bulbous toes, and a position in hillslope hollows (Haugerud, 2009).
- The geologic map is in agreement with the geomorphic map in that a deep-seated rotational landslide is located along the eastern boundary of the Owl Ridge Parcels (Polenz et al, 2013).
- Aspect reviewed the newest publicly available LiDAR data for the Owl Ridge Parcels and surrounding area (DNR, 2019), which shows bowl-shaped topography and hummocky

terrain along the eastern boundary, indicating a possible landslide. None of these features were observed on the Owl Ridge Parcels themselves.

 We reviewed coastal aerial photographs (Ecology, 2025) and aerial photographs (Google, 2025 and NETR, 2025) of the Owl Ridge Parcels area from 1951 through 2024 and did not observe any loss of vegetation that would suggest recent slope movement.

The results of this data review indicate that the Owl Ridge Parcels are not underlain by landslide deposits, but that there may be landslide deposits on the adjoining eastern property. Due to the topography of the area, this landslide is unlikely to put the Project at risk of a landslide.

#### **Conclusions and Recommendations**

From our geotechnical investigation, we conclude that the Owl Ridge Parcels is suitable for the proposed residential development, provided the recommendations contained herein are incorporated into the Project design and construction.

#### Geologically Hazardous Area Considerations

Three geologic hazards are mapped on and within the area of influence of the Owl Ridge Parcels including: high landslide hazard, moderate landslide hazards, and a moderate seismic hazard (Graphic 1). The seismic hazard shape matches the mapped extents of Esperance Sand Member on the geologic map. None of the materials encountered are liquefiable, thus soil liquefaction is not a seismic hazard or design consideration.

The moderate landslide hazard area along the western boundary was fully evaluated during our previous work and we concluded that the area was stable and no setback from the area was needed.

The high landslide hazard along the eastern boundary matches the shape of the deep-seated rotational landslide noted on the geologic and geomorphic maps. Our test pits closest to that boundary did not encounter landslide deposits. It is our opinion that this landslide is currently dormant; therefore, we do NOT recommend a minimum setback from the area; however, this area should be closely monitored during construction by us to confirm no landslide deposits are encountered.

## Additional Project Design and Construction Monitoring

All of our previous design and construction recommendations presented in our previous Geotechnical Engineering Report apply to the Owl Ridge Parcels and should be brought to the attention of designers and contractors and incorporated into the Project plans and specifications.

If significant cuts and fills are planned for the Owl Ridge Parcels, we recommend Aspect/Geosyntec be involved during construction, starting with our participation in a preconstruction meeting with you and your contractor. The integrity of the Project and the overall Site and Owl Ridge Parcels stability depends on proper site preparation and construction procedures. In addition, engineering decisions may have to be made in the field in the event that variations in subsurface conditions become apparent.

## References

- ASTM International (ASTM), 2022, Annual Book of ASTM Standards, West Conshohocken, Pennsylvania.
- Aspect Consulting, a Geosyntec company (Aspect), 2025, Geotechnical Engineering Report Johnson Residential Development Parcel Numbers: 232601-4-001-2009, 242601-3-003-2008, and 252601-2-047-2007 Poulsbo, Washington, Prepared for: Montebanc Management, LLC, Project No. AS240561-02, February 13, 2025.
- ESM Consulting Engineers LLC (ESM), 2025, Pinnacle at Liberty Bay, Job No. 2090-004-022, PP-06, Sheet 6 of 26, June 13, 2025.
- Google, 2025, Google Earth Pro Program, Years reviewed: 1994, 2004, 2005, 2006, 2007, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2020, 2021, 2022, 2023 and 2024, accessed January 23, 2025.
- Haugerud, R.A. and K.G. Troost (Haugerud and Troost), 2011, Geologic map of the Suquamish 7.5' Quadrangle and part of the Seattle North 7.5' x 15' Quadrangle, Kitsap County, Washington: U.S. Geological Survey Scientific Investigations Map 3181, scale 1:24,000.
- Haugerud, R.A., 2009, Preliminary geomorphic map of the Kitsap Peninsula, Washington, USGS, Open-File Report 2009-1033, Version 1.0, Scale 1:36,000.
- Kitsap County (County), 2025, Kitsap County Parcel Details and Parcel Map Application, https://psearch.kitsapgov.com/pdetails/default.aspx, accessed on April 1, 2025.
- McKenna, J.P., D.J. Lidke, and J.A. Coe (McKenna et al.), 2008, Landslides Mapped from LiDAR Imagery, Kitsap County, Washington: U.S. Department of the Interior, U.S. Geological Survey, Open File Report 2008-1292, Version 1.0.
- Nationwide Environmental Title Research, LLC (NETR), 2025, Historical Aerials, Years reviewed: 1951, 1969, 1981, 1994, 2006, 2009, 2011, 2013, 2015, 2017, 2019 and 2021, https://www.historicaerials.com/, accessed January 23, 2025.
- Polenz, Michael, Petro, G.T., Contreras, T.A., Stone, K.A., Paulin, G.I., and Cokiar, Recep (Polenz et al.), 2013, Geologic map of the Seabeck and Poulsbo 7.5-minute quadrangles, Kitsap and Jefferson Counties, Washington: Washington Division of Geology and Earth Resources, Map Series 2013-02, scale 1:24,000.
- Washington State Department of Ecology (Ecology), 1979, Coastal Zone Atlas of Washington, Shoreline and Coastal Zone Management Program, Volume 10, https://fortress.wa.gov/ecy/coastalatlas/tools/Map.aspx, accessed January 23, 2025.
- Washington State Department of Ecology (Ecology), 2025, Coastal Zone Atlas of Washington, Shoreline Photos from June 10, 1977, May 19, 1992, and July 24, 2016, available at: https://fortress.wa.gov/ecy/coastalatlas/, accessed January 23, 2025.

Washington State Department of Natural Resources (DNR), 2018, Washington Lidar Portal, Olympics South Opsw 2019 DTM hillshade, Kitsap County Opsw 2018 DTM hillshade, and Puget Lowlands 2005 DTM hillshade, lidarportal.dnr.wa.gov, accessed January 23, 2025.

### Limitations

Work for this project was performed for Montebanc Management, LLC (Client), and this report was prepared consistent with recognized standards of professionals in the same locality and involving similar conditions, at the time the work was performed. No other warranty, expressed or implied, is made by Aspect Consulting (Aspect).

Recommendations presented herein are based on our interpretation of site conditions, geotechnical engineering calculations, and judgment in accordance with our mutually agreed-upon scope of work. Our recommendations are unique and specific to the project, site, and Client. Application of this report for any purpose other than the project should be done only after consultation with Aspect.

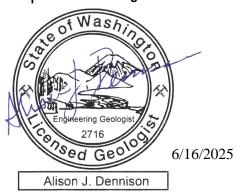
Variations may exist between the soil and groundwater conditions reported and those actually underlying the site. The nature and extent of such soil variations may change over time and may not be evident before construction begins. If any soil conditions are encountered at the site that are different from those described in this report, Aspect should be notified immediately to review the applicability of our recommendations.

Risks are inherent with any site involving slopes and no recommendations, geologic analysis, or engineering design can assure slope stability. Our observations, findings, and opinions are a means to identify and reduce the inherent risks to the Client.

It is the Client's responsibility to see that all parties to this project, including the designer, contractor, subcontractors, and agents, are made aware of this report in its entirety. At the time of this report, design plans and construction methods have not been finalized, and the recommendations presented herein are based on preliminary project information. If project developments result in changes from the preliminary project information, Aspect should be contacted to determine if our recommendations contained in this report should be revised and/or expanded upon.

The scope of work does not include services related to construction safety precautions. Site safety is typically the responsibility of the contractor, and our recommendations are not intended to direct the contractor's site safety methods, techniques, sequences, or procedures. The scope of our work also does not include the assessment of environmental characteristics, particularly those involving potentially hazardous substances in soil or groundwater.

All reports prepared by Aspect for the Client apply only to the services described in the Agreement(s) with the Client. Any use or reuse by any party other than the Client is at the sole risk of that party, and without liability to Aspect. Aspect's original files/reports shall govern in the event of any dispute regarding the content of electronic documents furnished to others.


Please refer to Appendix C titled "Report Limitations and Guidelines for Use" for additional information governing the use of this report.

We appreciate the opportunity to perform these services. If you have any questions please call Alison J. Dennison, LEG, Senior Engineering Geologist at 206-780-7717.

We appreciate the opportunity to perform these services.

Sincerely,

### Aspect consulting



#### Alison J. Dennison, LEG

Senior Engineering Geologist Alison.Dennison@aspectconsulting.com



Erik O. Andersen, PE

Senior Principal Geotechnical Engineer Erik.Andersen@aspectconsulting.com

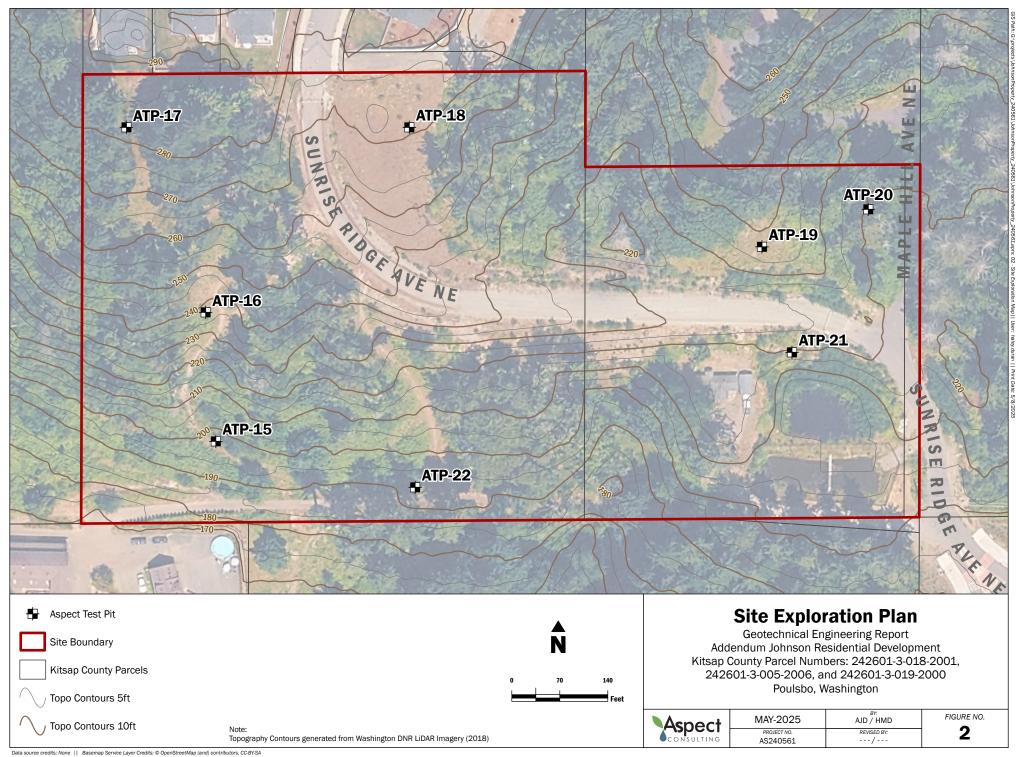
#### Attachments:

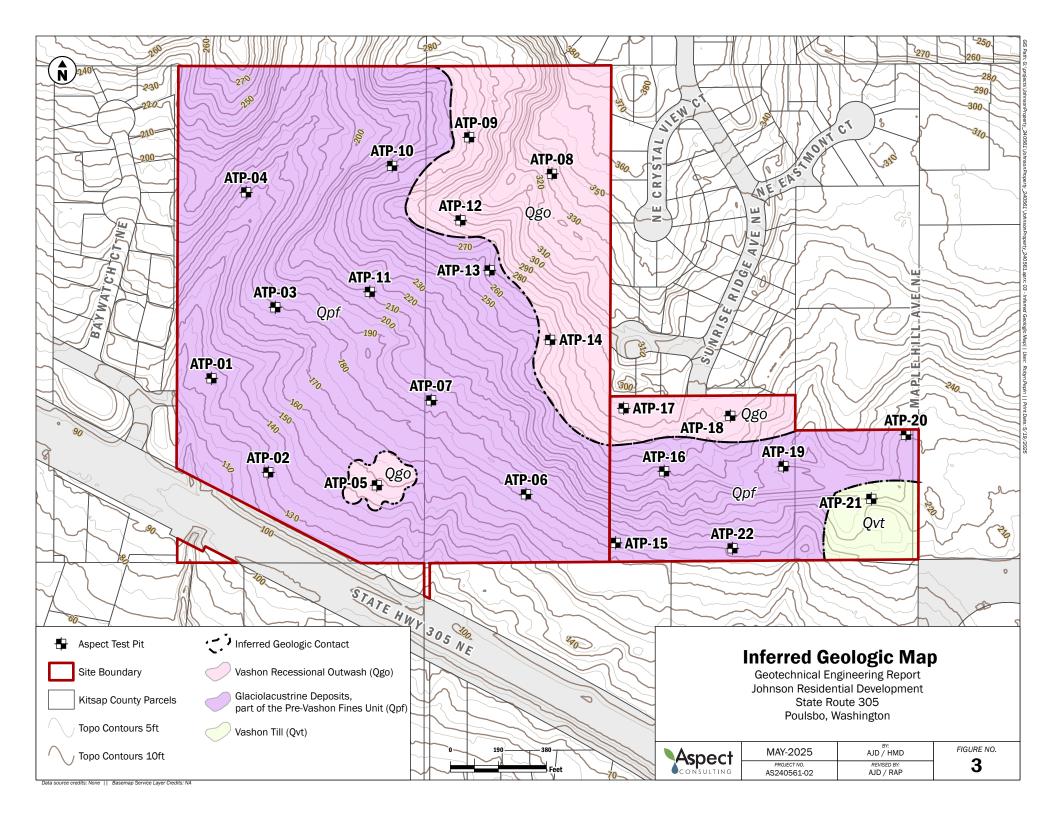
Figure 1 – Vicinity Map

Figure 2 – Site Exploration Plan

Figure 3 – Inferred Geologic Map

Appendix A – Exploration Logs


Appendix B – Geotechnical Laboratory Test Results


Appendix C – Report Limitations and Guidelines for Use

V:\240561 Johnson Residential Development\Deliverables\Johnson Property Geotechnical Report Addendum\_2025.06.16 revised.docx

# **FIGURES**







**APPENDIX A** 

**Subsurface Exploration Logs** 

# A. Subsurface Explorations

On April 17, 2025, Aspect observed the excavation of eight test pits, ATP-15 through ATP-22. The test pits were excavated by an excavation company provided by you. Test pits were excavated using a Kubota KX040-U tracked excavator. An Aspect representative, Chelsea Bush, LG, was present throughout the field exploration program to determine the locations of the explorations, observe the explorations, assist in sampling, and to prepare descriptive logs of each exploration. Samples were obtained from select soil units to aid in the determination of engineering properties of the subsurface materials and laboratory testing. The locations of explorations are shown on Figure 2 and were collected with a Global Positioning System (GPS).

Detailed descriptions of the subsurface conditions encountered in our explorations, as well as the depths where characteristics of the soils changed, are indicated on the logs presented herein. The depths indicated on the log where conditions changed may represent gradational variations between soil types. Soils were described per the Unified Soils Classification System (USCS) in general accordance with the ASTM International Standard Practice for Description and Identification of Soils (ASTM D2488; ASTM, 2022). The depths on the logs where conditions changed may represent gradational variations between soil types and actual transitions may be more gradual. The subsurface conditions depicted are only for the specific date and locations reported, and therefore, are not necessarily representative of other locations and times. A key to the symbols and terms used on the logs is provided in the Exploration Log Key.

The relative density/consistency of the soils was evaluated qualitatively with a 0.5-inch-diameter steel T-probe and observation of digging difficulty. Relative density was quantitatively assessed with Dynamic Cone Penetrometer Testing (DCPT) at various depth intervals within the test pits. The test pits were backfilled with the excavated soils.

The DCPT method involves a 15-pound steel mass falling 20 inches to strike an anvil, which drives a 1.5-inch-diameter, 45-degree cone into the soil. The number of blows required to drive the cone 1.75 inches is considered one data point. The DCPT data has been calibrated with Standard Penetration Test (SPT, ASTM Method D1586) results to provide a more refined estimate of soil relative density and consistency.

The test pits were backfilled with the excavated soils and tamped into place to reduce the amount of settlement.

|                                                                 | ction                                                                  |                 | 2000                                    | GW | Well-graded GRAVEL                                                                                   |
|-----------------------------------------------------------------|------------------------------------------------------------------------|-----------------|-----------------------------------------|----|------------------------------------------------------------------------------------------------------|
|                                                                 | se Fra<br>/e                                                           | ≤5% Fines       |                                         |    | Well-graded GRAVEL WITH SAND                                                                         |
| 200 Sieve                                                       | 0%¹ of Coaı<br>ı No. 4 Siev                                            | ≥ 5%            |                                         | GP | Poorly-graded GRAVEL<br>Poorly-graded GRAVEL WITH SAND                                               |
| ned on No.                                                      | Gravels - More than 50%¹ of Coarse Fraction<br>Retained on No. 4 Sieve | Fines           | 000000000000000000000000000000000000000 | GM | SILTY GRAVEL<br>SILTY GRAVEL WITH SAND                                                               |
| 50%1 Retai                                                      | Gravels - N                                                            | ≥15% Fines      |                                         | GC | CLAYEY GRAVEL<br>CLAYEY GRAVEL WITH SAND                                                             |
| More than                                                       | Fraction                                                               | -ines           |                                         | SW | Well-graded SAND<br>Well-graded SAND WITH GRAVEL                                                     |
| Coarse-Grained Soils - More than 50%1 Retained on No. 200 Sieve | re of Coarse<br>o. 4 Sieve                                             | ≤5% Fines       |                                         | SP | Poorly-graded SAND<br>Poorly-graded SAND WITH GRAVEL                                                 |
| Coarse-Gra                                                      | Sands - $50\%^1$ or More of Coarse Fraction<br>Passes No. 4 Sieve      | Fines           |                                         | SM | SILTY SAND<br>SILTY SAND WITH GRAVEL                                                                 |
|                                                                 | Sands - t                                                              | ≥15% Fines      |                                         | SC | CLAYEY SAND<br>CLAYEY SAND WITH GRAVEL                                                               |
| Sieve                                                           | /S<br>  S<br>  S<br>  S<br>  S<br>  S<br>  S<br>  S<br>  S<br>  S<br>  | 20%             |                                         | ML | SILT<br>SANDY or GRAVELLY SILT<br>SILT WITH SAND<br>SILT WITH GRAVEL                                 |
| re Passes No. 200 Sieve                                         | Silts and Clays                                                        | ווווור דבפס ווו |                                         | CL | LEAN CLAY<br>SANDY or GRAVELLY LEAN CLAY<br>LEAN CLAY WITH SAND<br>LEAN CLAY WITH GRAVEL             |
|                                                                 | S                                                                      | בולמומ          |                                         | OL | ORGANIC SILT<br>SANDY or GRAVELLY ORGANIC SILT<br>ORGANIC SILT WITH SAND<br>ORGANIC SILT WITH GRAVEL |
| ls - 50%1 or                                                    | ys                                                                     | NOIG            |                                         | МН | ELASTIC SILT SANDY OF GRAVELLY ELASTIC SILT ELASTIC SILT WITH SAND ELASTIC SILT WITH GRAVEL          |
| Fine-Grained Soils - 50%1 or Mo                                 | Silts and Clays                                                        |                 |                                         | СН | FAT CLAY<br>SANDY or GRAVELLY FAT CLAY<br>FAT CLAY WITH SAND<br>FAT CLAY WITH GRAVEL                 |
| Fine-                                                           | S                                                                      | בולק<br>מ       |                                         | ОН | ORGANIC CLAY SANDY or GRAVELLY ORGANIC CLAY ORGANIC CLAY WITH SAND ORGANIC CLAY WITH GRAVEL          |
| Highly                                                          | Organic<br>Soils                                                       |                 |                                         | PT | PEAT and other mostly organic soils                                                                  |

"WITH SILT" or "WITH CLAY" means 5 to 15% silt and clay, denoted by a "-" in the group name; e.g., SP-SM • "SILTY" or "CLAYEY" means >15% silt and clay • "WITH SAND" or "WITH GRAVEL" means 15 to 30% sand and gravel. • "SANDY" or "GRAVELLY" means >30% sand and gravel. • "Well-graded" means approximately equal amounts of fine to coarse grain sizes • "Poorly graded" means unequal amounts of grain sizes • Group names separated by "/" means soil contains layers of the two soil types; e.g., SM/ML.

Soils were described and identified in the field in general accordance with the methods described in ASTM D2488. Where indicated in the log, soils were classified using ASTM D2487 or other laboratory tests as appropriate. Refer to the report accompanying these exploration logs for details.

- Estimated or measured percentage by dry weight
   (SPT) Standard Penetration Test (ASTM D1586)
   Determined by SPT, DCPT (ASTM STP399) or other field methods. See report text for details.

| MC<br>PS<br>FC<br>GH<br>AL<br>C<br>Str<br>OC<br>Comp<br>K<br>SG                                      | =  <br>=  <br>=  <br>= (<br>= (<br>= (<br>= (    | Particle<br>Fines C<br>Hydrom<br>Atterbe<br>Consoli<br>Strengt<br>Organic<br>Proctor<br>Hydrau    | neter Test<br>rg Limits<br>dation Test<br>h Test<br>c Content (9                                                    | bution < 0.075 mm  t 6 Loss by Ig ivity Test                                                   |                                         |                                                                      | TECHNIC   | CAL LAB TESTS            |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------|-----------|--------------------------|
|                                                                                                      |                                                  | Organio                                                                                           | Chemical                                                                                                            | s                                                                                              |                                         |                                                                      | CHEMIC    | CAL LAB TESTS            |
| BTEX<br>TPH-Dx<br>TPH-G<br>VOCs<br>SVOCs<br>PAHs<br>PCBs<br>RCRA8<br>MTCA5<br>PP-13                  | =    <br>= 0  <br>= 0  <br>= 0  <br>= 0  <br>= 0 | Diesel a<br>Gasolin<br>Volatile<br>Semi-Vo<br>Polycyc<br>Polychlo<br>Metals<br>As, Ba,<br>As, Cd, | and Oil-Ran<br>ne-Range Po<br>Organic Co<br>olatile Orga<br>lic Aromati<br>orinated Bi<br>Cd, Cr, Pb,<br>Cr, Hg, Pb | etroleum Hy<br>ompounds<br>inic Compo<br>c Hydrocark<br>phenyls<br>Hg, Se, Ag,<br>(d = dissolv | um F<br>ydrod<br>unds<br>oon (<br>(d =  | Hydrocarbon<br>carbons<br>S<br>Compounds<br>dissolved,<br>t = total) | t = total | )<br>solved, t=total)    |
| PID                                                                                                  | =                                                | Photoic                                                                                           | nization De                                                                                                         | etector                                                                                        |                                         |                                                                      |           | FIELD TESTS              |
| Sheen<br>SPT <sup>2</sup>                                                                            |                                                  |                                                                                                   | en Test<br>rd Penetrat                                                                                              | ion Tost                                                                                       |                                         |                                                                      |           |                          |
| NSPT                                                                                                 |                                                  |                                                                                                   |                                                                                                                     | etration Te                                                                                    | st                                      |                                                                      |           |                          |
| DCPT                                                                                                 | =                                                | Dynami                                                                                            | ic Cone Per                                                                                                         | netration Te                                                                                   | est                                     |                                                                      |           |                          |
| Descripe<br>Boulder<br>Cobbles<br>Coarse S<br>Fine Gra<br>Coarse S<br>Medium<br>Fine Sar<br>Silt and | Grave<br>Gravel<br>Sand<br>Sand                  | =<br>=<br>=<br>=<br>=<br>=<br>d =                                                                 | Larger tha 3 inches t 3 inches t 3/4 inche No. 4 (4.7 No. 10 (2. No. 40 (0.                                         | 00 mm) to                                                                                      | s<br>es<br>4.75<br>lo. 1<br>No.<br>o No | 5 mm)<br>0 (2.00 mm<br>40 (0.425 r<br>5. 200 (0.07                   | nm)       | COMPONENT<br>DEFINITIONS |
| % by We <1 1 to <5 5 to 10                                                                           | =                                                | Subt                                                                                              | race                                                                                                                | % by Weig<br>15 to 25<br>30 to 45<br>>50                                                       | <u>ht</u><br>=<br>=<br>=                |                                                                      |           | ESTIMATED¹ PERCENTAGE    |
| Dry<br>Slightly                                                                                      | Moist                                            | : = P                                                                                             | bsence of                                                                                                           | moisture                                                                                       |                                         | , dry to the t                                                       | ouch      | MOISTURE<br>CONTENT      |

Moist Damp but no visible water Very Moist Water visible but not free draining

Wet Visible free water, usually from below water table

#### **RELATIVE DENSITY** Non-Cohesive or Coarse-Grained Soils

| Density <sup>3</sup> | SPT <sup>2</sup> Blows/Foot | Penetration with 1/2" Diameter Rod |
|----------------------|-----------------------------|------------------------------------|
| Very Loose           | = 0  to  4                  | ≥ 2'                               |
| Loose                | = 5  to  10                 | 1' to 2'                           |
| Medium Dense         | = 11  to  30                | 3" to 1'                           |
| Dense                | = 31  to  50                | 1" to 3"                           |
| Very Dense           | = > 50                      | < 1"                               |

#### **Cohesive or Fine-Grained Soils**

#### **CONSISTENCY**

Manual Test

| Consistency <sup>3</sup> | SPT <sup>2</sup> Blows/Foot |
|--------------------------|-----------------------------|
|--------------------------|-----------------------------|

Very Soft Soft = 0 to 1Penetrated >1" easily by thumb. Extrudes between thumb & fingers. Penetrated 1/4" to 1" easily by thumb. Easily molded. 2 to 4

Medium Stiff = 5 to 8 Penetrated >1/4" with effort by thumb. Molded with strong pressure. = 9 to 15 Stiff Indented ~1/4" with effort by thumb.

Very Stiff = 16 to 30 Indented easily by thumbnail. Hard = > 30 Indented with difficulty by thumbnail.

#### **GEOLOGIC CONTACTS**

Observed and Distinct

Observed and Gradual

Inferred



**Exploration Log Key** 

|                          | A               | cnast                         |                                       | J        | oh            | ns      | on    | Pro    | ope    | rty -    | AS240                    | 56         | 1     |             |                      | Geotechnical Ex                                           | ploration Lo                                                  | og              |
|--------------------------|-----------------|-------------------------------|---------------------------------------|----------|---------------|---------|-------|--------|--------|----------|--------------------------|------------|-------|-------------|----------------------|-----------------------------------------------------------|---------------------------------------------------------------|-----------------|
|                          |                 | spect                         |                                       |          |               | Proj    | ect A | Addres | s & S  | ite Spec | ific Location            |            |       |             |                      | Coordinates (Lat,Lon WGS84)                               | Exploration Nu                                                |                 |
|                          |                 | ON SULTING<br>Contractor      | Egu                                   | ipm      | ent           | ŀ       | -ou   | ISDO,  | vvA,   | See Fi   | gure 2.<br>ampling Metho | od         |       |             |                      | 47.7230, -122.6255 (est)<br>Ground Surface Elev. (NAVD88) | — ATP-1                                                       | 15              |
| F                        | reed            | om Boring &                   | Kubota                                | •        |               | -4      |       |        |        | 3        | Grab                     | - <b>.</b> |       |             |                      | 195' (est)                                                |                                                               |                 |
|                          |                 | cavating<br>Operator          | Exploration                           |          |               |         |       |        |        | Work S   | tart/Completio           | n Da       | ate   | s           |                      | Top of Casing Elev. (NAVD88)                              | Depth to Water (Be                                            | elow GS)        |
|                          |                 | Neil                          | Trac                                  |          |               | -(0)    |       |        |        |          | 4/17/2025                |            |       | •           |                      | NA                                                        | 2.5' (See                                                     | ,               |
|                          | Elev.<br>(feet) | Exploration N<br>Completion   | Notes and<br>Details                  | Sa<br>Ty | mple<br>pe/ID | VV      | ater  |        | nt (%) | Blows    | 6" Tests                 | N          | /late | erial<br>pe |                      | Description                                               |                                                               | Depth<br>(ft)   |
| 3 - 4 - 5 - 6 - 7 -      |                 | Explora with exmateria place. | tion backfilled cavated ls, tamped in | Tyl      | pe/ID         | 0 10    |       | 0 30   |        |          | o rests                  |            | Ty    | pe          | WE. SILT W           | TOPSOIL<br>/ITH SAND (ML); loose, moist,                  | PLACUSTRINE se, moist, light staining.  RINE DEPOSITS , gray. | (ft)            |
| 9 -                      | -186<br>-185    |                               |                                       | <b>E</b> | 81            |         |       |        |        |          |                          |            |       |             | SILTW                | /TTH SAND (ML); very dense, I                             | noist, blue gray.                                             | - 9<br>-10      |
| 11-                      | 184             | 500201                        |                                       |          |               | -+      | -     |        |        | +        |                          | Н          | Ш     |             | Bottom of            | of exploration at 11 ft. bgs.                             |                                                               | 11              |
| 12-                      | -183            |                               |                                       |          |               |         | _     |        | -      | _        |                          |            |       |             |                      | est pit excavated prior to arrival                        | . No test pit caving                                          | -12             |
| 13-                      | 182             |                               |                                       |          |               |         | _     | L .    | _      | _        |                          |            |       |             |                      |                                                           |                                                               | <del>-</del> 13 |
|                          | -               |                               |                                       |          |               |         |       |        |        |          |                          |            |       |             |                      |                                                           |                                                               |                 |
| 14-                      | -181            |                               |                                       |          |               |         | _     |        | -      |          |                          |            |       |             |                      |                                                           |                                                               | -14             |
|                          |                 | gend                          |                                       |          | <br>Plasti    | ic Limi | it ⊢  |        |        | d Limit  |                          |            |       |             | See Evol             | oration Log Key for explanatior                           |                                                               |                 |
| 11-<br>12-<br>13-<br>14- |                 | Grab sample                   |                                       |          |               | Water   |       | y W    | ater I | Level (S | Seepage)                 |            |       |             | of symbo<br>Logged b | ols                                                       | Explorat<br>Log<br>ATP-19<br>Sheet 1 of                       | 5               |

|                                                                                |                                                                                                      | spect                         |                                             | Jo             | Proje          | ct Add  | ress & .        | erty<br>Site Specifi<br>, See Fig | AS240s<br>ic Location<br>ure 2.                                            |                | Geotechnical Ex<br>Coordinates (Lat,Lon WGS84)<br>47.7233, -122.6255 (est) | Exploration Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                     |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------|----------------|----------------|---------|-----------------|-----------------------------------|----------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|                                                                                | С                                                                                                    | Contractor om Boring &        |                                             | iipment        |                |         | -               |                                   | mpling Metho                                                               | od             |                                                                            | Ground Surface Elev. (NAVD88)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ATP-16                                                                                              |
|                                                                                | Ex                                                                                                   | cavating Operator             | Kubota<br>Exploration                       |                |                |         |                 | Work Sta                          | Grab<br>art/Completion                                                     | n Dates        |                                                                            | 238' (est) Top of Casing Elev. (NAVD88)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Depth to Water (Below GS)                                                                           |
|                                                                                | ,                                                                                                    | Neil                          |                                             | ckhoe          |                |         |                 |                                   | 4/17/2025                                                                  | n Dales        |                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Water Encountered                                                                                |
| Depth<br>(feet)                                                                | Elev.<br>(feet)                                                                                      | Exploration N                 | Notes and                                   | Samp<br>Type/I | le Wat         | ter Con | foot Attent (%) | Blows/6                           |                                                                            | Materi<br>Type | al                                                                         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dept<br>(ft)                                                                                        |
| 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 13 - 13 - 13 - 13 - 13 | -237<br>-236<br>-235<br>-234<br>-233<br>-232<br>-231<br>-230<br>-229<br>-228<br>-227<br>-226<br>-225 | Explora with exmateria place. | tion backfilled<br>cavated<br>is, tamped in |                | 12.6           | 21.5    |                 |                                   | DCPT<br>=8,10,12<br>PS,MC<br>FC=8%<br>DCPT<br>=10,8,14<br>FC, MC<br>FC=66% |                | SILT (No. 1) SAND No. 2 brown; i                                           | TOPSOIL  ### ASHON RECESSIONAL OR  ### WASHON RECESSIONAL OR  ### WITH SILT (SP-SM); medium of  ron-oxide staining; few small roc  ### ATHERED GLACIOLACUSTRI  ** SILT (ML); dense, moist, gray  ### EATHERED GLACIOLACUSTRI  ** SILT (ML); very dense, moist,  ### Of exploration at 9.5 ft. bgs.  ### District to the staining of the staini | Dundant organics.  JTWASH ense, moist, light ots.  - 1  - 2  - 3  - 4  NE DEPOSITS brown.  - 6  - 7 |
| Sample                                                                         | (80)                                                                                                 | gend<br>Grab sample           |                                             | Pla            | Water<br>Level |         |                 | id Limit<br>Iter Enco             | untered                                                                    |                | of symbo                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Exploration<br>Log<br>ATP-16<br>Sheet 1 of 1                                                        |

|                                         | Venost                                                                   |                      | Jo            | hns        | on     | Pro    | pe             | rty - /                 | <b>4S240</b>                                     | 561                                    |                                                                  | Geotechnical Exploration Log                                                                                                                                                                       |                                                                                                                            |                                                      |
|-----------------------------------------|--------------------------------------------------------------------------|----------------------|---------------|------------|--------|--------|----------------|-------------------------|--------------------------------------------------|----------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| X                                       | -SPECT CONSULTING                                                        |                      |               | Proj       | ject A | Addres | s & Sit        | te Specifio<br>See Figu | Location                                         |                                        |                                                                  | Coordinates (Lat,Lon WGS84)<br>47.7238, -122.6258 (est)                                                                                                                                            | Exploration Num                                                                                                            |                                                      |
|                                         | Contractor                                                               | Equ                  | iipmeni       |            | ı-ou   | เอมบ,  | v v A, 3       |                         | npling Metho                                     | nd                                     |                                                                  | Ground Surface Elev. (NAVD88)                                                                                                                                                                      | ATP-1                                                                                                                      | 7                                                    |
| Fre                                     | eedom Boring & Excavating                                                | Kubota               |               |            |        |        |                |                         | Grab                                             |                                        |                                                                  | 275' (est)                                                                                                                                                                                         |                                                                                                                            |                                                      |
|                                         | Operator                                                                 | Exploration          |               |            |        |        |                | Work Sta                | rt/Completio                                     | n Dates                                |                                                                  | Top of Casing Elev. (NAVD88)                                                                                                                                                                       | Depth to Water (Beld                                                                                                       | ow GS)                                               |
|                                         | Neil                                                                     | Tra                  | ckhoe         | )          |        |        |                | 4                       | 1/17/2025                                        |                                        |                                                                  | NA                                                                                                                                                                                                 | No Water Encour                                                                                                            | ntered                                               |
| Depth El<br>(feet) (fe                  |                                                                          | lotes and<br>Details | Samp<br>Type/ | וחו ייי    | ater   |        | t (%)●         | Blows/6'                | Tests                                            | Materia<br>Type                        | ıl                                                               | Description                                                                                                                                                                                        |                                                                                                                            | Depti<br>(ft)                                        |
| 1 -2 2 -2 3 -2 4 -2 5 -2 6 -2 7 -2 8 -2 | 74 Explora with exmateria place.  73  72  71  69  68  67  66  64  63  62 | tion backfilled      |               | 3.8        |        |        |                |                         | T-probe = 4 inches  DCPT = 9,12,17  PS, MC FC=7% | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | SAND \ medium coarse, subroun 2-inch-do BOULD to coars gravel; u | TOPSOIL  AL); loose, moist, dark brown; al  VASHON RECESSIONAL OU  WITH SILT, GRAVEL, AND Cod  dense, moist, brown; fine to co  subrounded gravel; up to 5-inch  ided cobbles; iron-oxide staining | JTWASH BBLES (SP-SM); arse sand; fine to -diameter ; roots up to  ES, AND moist, brown; fine lar to subrounded ir cobbles. | - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 10 - 11 - 12 - 13 - 14 |
| _                                       | Legend  Grab sample                                                      |                      | Pla           | Water Lime |        |        | Liquid<br>Wate | Limit<br>er Encou       | untered                                          |                                        | of symbo                                                         |                                                                                                                                                                                                    | Exploration Log ATP-17                                                                                                     |                                                      |

|                                                                                | A                                                                                            | spect                         | Johnson Property - AS240561  Project Address & Site Specific Location Poulsbo, WA, See Figure 2.  Equipment Sampling Method |           |               |       |       |      |       |       |                  |                                      |           |               | Geotechnical Ex<br>Coordinates (Lat,Lon WGS84)<br>47.7238, -122.6247 (est) | Exploration Nul                                                                                                                                                                                                                                                                                                                                                     | mber                                                                                       |              |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------|---------------|-------|-------|------|-------|-------|------------------|--------------------------------------|-----------|---------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------|
| F                                                                              | C<br>reed                                                                                    | Contractor<br>om Boring &     |                                                                                                                             |           |               |       |       |      | ·     |       |                  | npling Metho                         | od        |               |                                                                            | Ground Surface Elev. (NAVD88)                                                                                                                                                                                                                                                                                                                                       | AIP-1                                                                                      | 0            |
|                                                                                |                                                                                              | cavating Derator              | Kubota<br>Exploration                                                                                                       |           |               |       | +     |      |       |       | Work Sta         | Grab<br>rt/Completion                | n Date    | es            |                                                                            | 267' (est) Top of Casing Elev. (NAVD88)                                                                                                                                                                                                                                                                                                                             | Depth to Water (Be                                                                         | elow GS      |
|                                                                                |                                                                                              | Neil                          |                                                                                                                             | ckh       |               |       |       |      |       |       |                  | /17/2025                             |           |               |                                                                            | NA NA                                                                                                                                                                                                                                                                                                                                                               | No Water Encou                                                                             |              |
|                                                                                | Elev.<br>(feet)                                                                              |                               | Notes and<br>Details                                                                                                        | Sa<br>Typ | mple<br>pe/ID | "     | /ater |      | ent ( | %)●   | Blows/6'         | Tests                                | Mat<br>Ty | terial<br>ype |                                                                            | Description                                                                                                                                                                                                                                                                                                                                                         |                                                                                            | Dept<br>(ft) |
| 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 13 - 13 - 13 - 13 - 13 | -266<br>-265<br>-264<br>-264<br>-262<br>-261<br>-260<br>-259<br>-258<br>-257<br>-256<br>-255 | Explora with exmateria place. | tion backfilled<br>cavated<br>als, tamped in                                                                                |           |               | 7.9   |       | 20 3 |       | 40 50 |                  | DCPT<br>=4,21,30<br>PS, MC<br>FC=30% |           |               | SAND Medium coarse, subround SILTY coarse s gravel; g                      | TOPSOIL TITH SAND (ML); loose, moist, it organics; small roots.  VASHON TILL WITH SILT, GRAVEL, AND Codense, moist, brown; fine to coubrounded gravel; up to 5-inc ded cobbles; iron-oxide stainin liameter.  SAND (SM); very dense, moist, sand; fine to coarse, subangular gravel socketed in matrix.  of exploration at 5 ft. bgs.  to test pit caving observed. | OBBLES (SP-SM);<br>oarse sand; fine to<br>h-diameter<br>g; roots up to<br>t, gray; fine to | 1            |
| Sample                                                                         |                                                                                              | gend<br>Grab sample           |                                                                                                                             |           | Plast         | Water |       | N    |       |       | Limit<br>er Enco | untered                              |           |               | of symbol<br>Logged b                                                      |                                                                                                                                                                                                                                                                                                                                                                     | Explorati<br>Log<br>ATP-18<br>Sheet 1 of                                                   | В            |

| Aspect Consulting Contractor Freedom Boring & Excavating Operator Neil                           |                                                                                              |                               |                                                         | Johnson Property - AS240561  Project Address & Site Specific Location  Poulsbo, WA, See Figure 2. |                 |         |       |                                                    |       |     |          |                                     |   |       |             |                                           | Geotechnical Exploration Coordinates (Lat,Lon WGS84) Exploration 47.7235, -122.6233 (est) |                                                                  | n Number          |  |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------|---------|-------|----------------------------------------------------|-------|-----|----------|-------------------------------------|---|-------|-------------|-------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------|--|
|                                                                                                  |                                                                                              |                               | Equipment Kubota KX040-4 Exploration Method(s) Trackhoe |                                                                                                   |                 |         |       | Sampling Method  Grab  Work Start/Completion Dates |       |     |          |                                     |   |       |             |                                           | Ground Surface Elev. (NAVD88)  234' (est)  Top of Casing Elev. (NAVD88)                   | ATP-19  Depth to Water (Below GS)                                |                   |  |
|                                                                                                  |                                                                                              |                               |                                                         |                                                                                                   |                 |         |       | 4/17/2025                                          |       |     |          |                                     |   |       |             |                                           | NA NA                                                                                     | No Water Encour                                                  |                   |  |
| Depth<br>(feet)                                                                                  | Elev.<br>(feet)                                                                              | Exploration N<br>Completion   | Notes and<br>n Details                                  | Sa<br>Ty                                                                                          | ample<br>/pe/ID | W 0 1   | /ater | ows/for                                            | ent ( | %)● | Blows/6" | Tests                               | N | /late | erial<br>pe |                                           | Description                                                                               |                                                                  | Dept<br>(ft)      |  |
| 1 2 - 3 - 4 5 - 6 - 7 8 10 - 11 - 12 - 13 - 13 - 13 - 13 - 14 - 15 - 15 - 15 - 15 - 15 - 15 - 15 | -233<br>-232<br>-231<br>-230<br>-229<br>-228<br>-227<br>-226<br>-225<br>-224<br>-223<br>-222 | Explora with exmateria place. | tion backfilled<br>cavated<br>ils, tamped in            |                                                                                                   | 18              | tic Lin |       | 29.6                                               |       |     | Limit    | DCPT<br>=8.17.20<br>FC,MC<br>FC=89% |   |       |             | SANDY moist, gr subangui fractures Become | es very moist.  EATHERED GLACIOLACUST ITH SAND (ML); dense, moist,                        | ACUSTRINE edium dense, very fine to coarse, oxide staining along | - 1<br>- 2<br>- 3 |  |
| Sample                                                                                           |                                                                                              | Grab sample                   |                                                         |                                                                                                   |                 | Water   | Г     |                                                    |       | •   | er Encol | untered                             |   |       |             | of symbol                                 |                                                                                           | Exploration Log ATP-19 Sheet 1 of 1                              |                   |  |

|                                 | Λ.              | cnoct                            |                                      | Jo          | hn       | sol         | n Pı           | rop    | er     | ty - /                 | <b>\S240</b> 5 | 6  | 1            |                              | Geotechnical Exp                                                                                                                                                       | loration Lo                                                               | g                                             |
|---------------------------------|-----------------|----------------------------------|--------------------------------------|-------------|----------|-------------|----------------|--------|--------|------------------------|----------------|----|--------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------|
|                                 | С               | SPECT<br>DISULTING<br>Contractor | Eaul                                 | ipmen       | P        | Projec      | t Addr         | ess &  | & Site | e Specific<br>See Figu | Location       |    |              |                              | Coordinates (Lat,Lon WGS84)<br>47.7237, -122.6227 (est)<br>Ground Surface Elev. (NAVD88)                                                                               | Exploration Num  ATP-2                                                    | nber                                          |
| F                               | reed            | om Boring &<br>cavating          | Kubota                               | •           |          |             |                |        |        | 2011                   | Grab           |    |              |                              | 267' (est)                                                                                                                                                             |                                                                           |                                               |
|                                 |                 | Operator                         | Exploratio                           |             |          | )           |                |        | V      | Nork Sta               | t/Completion   | Da | tes          |                              | Top of Casing Elev. (NAVD88)                                                                                                                                           | Depth to Water (Beld                                                      | ow GS)                                        |
|                                 |                 | Neil                             | Trac                                 | ckhoe       | е        |             |                |        |        | 4                      | /17/2025       |    |              |                              | NA                                                                                                                                                                     | No Water Encou                                                            | ntered                                        |
|                                 | Elev.<br>(feet) | Exploration N<br>Completion      | lotes and<br>Details                 | Sam<br>Type |          | Wate        | Blows/fer Cont | ent (9 | %)●    | Blows/6"               | Tests          | М  | ater<br>Type | ial<br>e                     | Description                                                                                                                                                            | ı                                                                         | Depth<br>(ft)                                 |
| 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - |                 | Completion                       | tion backfilled avated is, tamped in | Samm        |          |             | er Cont 20 3   | ent (9 | %)     | Blows/6"               | DCPT =4,11,13  |    | Type         | SILT abun  SILT brown fractu | TOPSOIL  WITH SAND (ML); loose, moist, d dant organics.  HIGHLY WEATHERED GLACIOL DEPOSITS  WITH SAND (ML); medium dense if, fine to medium sand; iron-oxide services. | ACUSTRINE  e, very moist, staining along  NE DEPOSITS Dist, gray; fine to | - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 |
| 12-                             | -255            |                                  |                                      |             | _        | -           |                | -      |        |                        |                |    |              |                              |                                                                                                                                                                        |                                                                           | -12                                           |
|                                 |                 |                                  |                                      |             |          |             |                |        |        |                        |                |    |              |                              |                                                                                                                                                                        |                                                                           |                                               |
| 13-                             | -254            |                                  |                                      |             |          | +-          |                | -      |        |                        |                |    |              |                              |                                                                                                                                                                        |                                                                           | -13                                           |
| 14-                             | -253            |                                  |                                      |             | _        | -           | -              | _      |        |                        |                |    |              |                              |                                                                                                                                                                        |                                                                           | -14                                           |
| 10-<br>11-<br>12-<br>14-        |                 | gend                             |                                      | <br>PI      | lastic L | Level Level |                |        |        | Limit<br>er Encou      | ıntered        |    |              | of sym<br>Logge              | xploration Log Key for explanation<br>abols<br>and by: CB<br>wed by: AJD 5/14/2025                                                                                     | Exploration Log ATP-20 Sheet 1 of 1                                       | )                                             |

|                                   | Λ.                                                   | cnost                         |                                        | J          | oh            | ns            | on     | Pro           | pe             | rty - A                 | <b>4S240</b> 5                      | 61   |               |                                                                                                                             | Geotechnical Ex                                                                                                                                                                                                                                                                                                                                                                                                                   | ploration Lo                                                                                       | g                        |
|-----------------------------------|------------------------------------------------------|-------------------------------|----------------------------------------|------------|---------------|---------------|--------|---------------|----------------|-------------------------|-------------------------------------|------|---------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------|
|                                   | <u> </u>                                             | SPECT                         |                                        |            |               | Proj          | iect A | Addres        | s & Si         | te Specifio<br>See Figu | CLocation                           | _    |               |                                                                                                                             | Coordinates (Lat,Lon WGS84)<br>47.7232, -122.6232 (est)                                                                                                                                                                                                                                                                                                                                                                           | Exploration Num                                                                                    | nber                     |
|                                   | С                                                    | Contractor                    | Equ                                    | ıipme      | ent           |               | Poul   | ISDO,         | VVA,           |                         | npling Metho                        | d    |               |                                                                                                                             | Ground Surface Elev. (NAVD88)                                                                                                                                                                                                                                                                                                                                                                                                     | ⊢ ATP-2                                                                                            | 1                        |
| F                                 | reed                                                 | om Boring & cavating          | Kubota                                 |            |               | -4            |        |               |                |                         | Grab                                |      |               |                                                                                                                             | 222' (est)                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                    |                          |
|                                   |                                                      | Operator                      | Exploration                            |            |               |               |        |               |                | Work Sta                | rt/Completion                       | Date | es            |                                                                                                                             | Top of Casing Elev. (NAVD88)                                                                                                                                                                                                                                                                                                                                                                                                      | Depth to Water (Bel                                                                                | ow GS)                   |
|                                   |                                                      | Neil                          | Tra                                    | ckh        | oe            |               |        |               |                | 4                       | 1/17/2025                           |      |               |                                                                                                                             | NA                                                                                                                                                                                                                                                                                                                                                                                                                                | No Water Encou                                                                                     | ntered                   |
| Depth<br>(feet)                   | Elev.<br>(feet)                                      | Exploration N<br>Completion   | Notes and<br>n Details                 | Sai<br>Typ | mple<br>pe/ID |               | ater ( |               | t (%)          | Blows/6'                | Tests                               |      | terial<br>/pe |                                                                                                                             | Description                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                    | Depti<br>(ft)            |
| 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 8 | -221<br>-220<br>-219<br>-218<br>-217<br>-216<br>-215 | Explora with exmateria place. | ation backfilled cavated is, tamped in | Tyr        | 200e/ID       | 14            | 0 2    | Content of 30 |                |                         | DCPT<br>=7,13,9<br>PS, MC<br>FC=59% |      |               | SILT W medium  SILT W fine to co gravel; in  Become  SILT W coarse s iron-oxid  SILTY: dense, n coarse, s 6-inch-d and cobb | TOPSOIL  ITH SAND (ML); loose, moist, sand; up to 2 inch diameter row  VASHON TILL  ITH SAND (ML); medium densions es sand; trace fine to coarse ron-oxide staining.  WITH SAND (ML); dense, moist sand; trace fine to coarse, subrole staining.  SAND WITH GRAVEL AND Coarse subangular to rounded gravel; usiameter, subangular to subrour bles socketed in matrix.  of exploration at 6 ft. bgs.  to test pit caving observed. | e, moist, brown; e, subrounded  , gray; fine to bunded gravel;  OBBLES (SM); e sand; fine to up to | (ft)<br>1<br>2<br>3<br>4 |
| 10-                               | -212                                                 |                               |                                        |            |               |               |        |               |                |                         |                                     |      |               |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    | -10                      |
| 11-                               | -211                                                 |                               |                                        |            |               |               |        |               | _  -           |                         |                                     |      |               |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    | -11                      |
| 12-                               | -210                                                 |                               |                                        |            |               |               | - —    |               | -              |                         |                                     |      |               |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    | -12                      |
| 13-                               | -209                                                 |                               |                                        |            |               |               |        | _             | -              |                         |                                     |      |               |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    | -13                      |
| 14-                               | -208                                                 |                               |                                        |            |               |               |        |               | -              |                         |                                     |      |               |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    | -14                      |
| 10-<br>11-<br>12-<br>13-<br>14-   | - T                                                  | gend<br>Grab sample           |                                        |            | Plasti        | Water Display | Г      |               | Liquid<br>Wate | Limit<br>er Enco        | untered                             |      |               | of symbol<br>Logged b                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                   | Exploration Log ATP-21                                                                             |                          |

| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Λ                                                      | cnact                       |                                      | J                     | oh            | nso        | on     | Pro                      | ppe    | rty -              | AS240           | 56   | 1              |                            | Geotechnical Exp                                                                                                                                                                                                                                                                                                                                                                                        | loration Lo                                                           | g                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------|--------------------------------------|-----------------------|---------------|------------|--------|--------------------------|--------|--------------------|-----------------|------|----------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Co                                                     | Spect on sulting            |                                      |                       |               |            |        |                          |        | See Fig            |                 |      |                |                            | Coordinates (Lat,Lon WGS84)<br>47.7228, -122.6242 (est)                                                                                                                                                                                                                                                                                                                                                 | Exploration Num                                                       |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | С                                                      | ontractor<br>om Boring &    | Equ                                  | iipm                  | ent           |            |        | <u> </u>                 |        |                    | mpling Meth     | od   |                |                            | Ground Surface Elev. (NAVD88)                                                                                                                                                                                                                                                                                                                                                                           | ATP-2                                                                 | _                                          |
| '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ex                                                     | cavating                    | Kubota                               |                       |               |            |        |                          |        |                    | Grab            |      |                |                            | 190' (est)                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (                                                      | Operator                    | Exploration                          |                       |               | d(s)       |        |                          |        |                    | art/Completic   | n Da | ates           |                            | Top of Casing Elev. (NAVD88)                                                                                                                                                                                                                                                                                                                                                                            | Depth to Water (Bel                                                   |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | Neil                        | Tra                                  | ckh                   | oe            | 1          |        |                          |        |                    | 4/17/2025       | _    |                |                            | NA                                                                                                                                                                                                                                                                                                                                                                                                      | No Water Encou                                                        | ntered                                     |
| Depth<br>(feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Elev.<br>(feet)                                        | Exploration N<br>Completion | Notes and<br>Details                 | Sa<br>Ty <sub>l</sub> | mple<br>pe/ID | W:<br>0 10 | ater ( | ws/foo<br>Conten<br>0 30 | t (%)  | Blows/6            | 6" Tests        | N    | ∕later<br>Type | ial<br>e                   | Description                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       | Depth<br>(ft)                              |
| 1 2 - 3 - 4 5 6 7 8 10 11 - 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 - | -189 -188 -187 -186 -185 -184 -183 -182 -181 -179 -178 | Explora                     | tion backfilled avated ls, tamped in | Tyl                   | 18            |            |        |                          | 40 8   |                    | DCPT<br>=8,15,9 |      | Type           | SANI brown subro iron-o    | TOPSOIL Y SAND WITH GRAVEL (SM); loo ; fine to coarse sand; fine to coarse unded gravel; organics; up to 1-inc  VASHON TILL DY SILT WITH GRAVEL (ML); loo ; fine to coarse sand; trace fine to unded gravel; up to 5-inch-diamete xide staining.  omes dense, moist, gray brown.  omes with 0.1- to 0.2-inch-thick SA omes very moist.  on of exploration at 8.5 ft. bgs.  No test pit caving observed. | e, subangular to h-diameter roots.  se, wet, gray coarse, er cobbles; | -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 |
| 14-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -176                                                   |                             |                                      |                       |               | _          | -      | _                        | -      |                    |                 |      |                |                            |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       | -14                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 -                                                    |                             |                                      |                       | Dia-4         | io l i=    | :+ •   |                          | Lieur  | d Lipscia          |                 |      |                |                            | ı                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                       |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                      | gend<br>Crob comple         |                                      |                       | rıast         | ic Lim     | "      |                          |        | d Limit<br>er Enco | ountered        |      |                |                            | ploration Log Key for explanation                                                                                                                                                                                                                                                                                                                                                                       | Explorati                                                             | on                                         |
| Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        | Grab sample                 |                                      |                       |               | Water      | Level  | INO                      | · vval | .o. L1100          | antorou         |      |                | of sym<br>Logged<br>Approv | bols<br>d by: CB<br>ved by: AJD 5/14/2025                                                                                                                                                                                                                                                                                                                                                               | Log<br>ATP-22<br>Sheet 1 of 1                                         | !                                          |

### **APPENDIX B**

Geotechnical Laboratory Testing Results

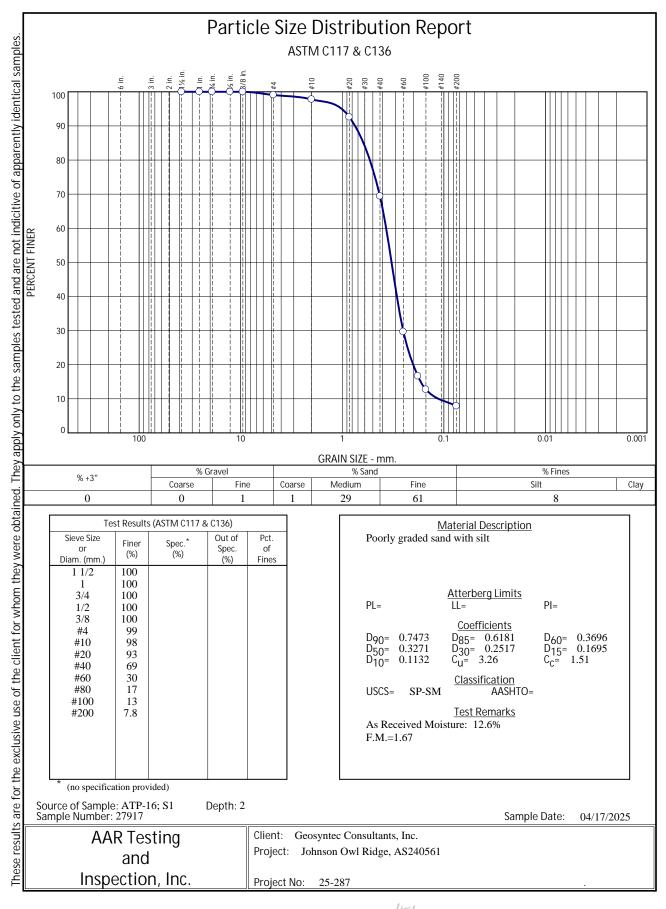
### B. Geotechnical Laboratory Testing Results

Geotechnical laboratory tests were conducted on selected soil samples collected during the field exploration program. The tests performed, and the procedures followed, are outlined below. The laboratory tests were conducted in general accordance with appropriate ASTM International (ASTM) test methods and were conducted by AAR Testing and Inspection, Inc., an accredited laboratory in Redmond, Washington.

### **B.1. Moisture Content Determination, MC**

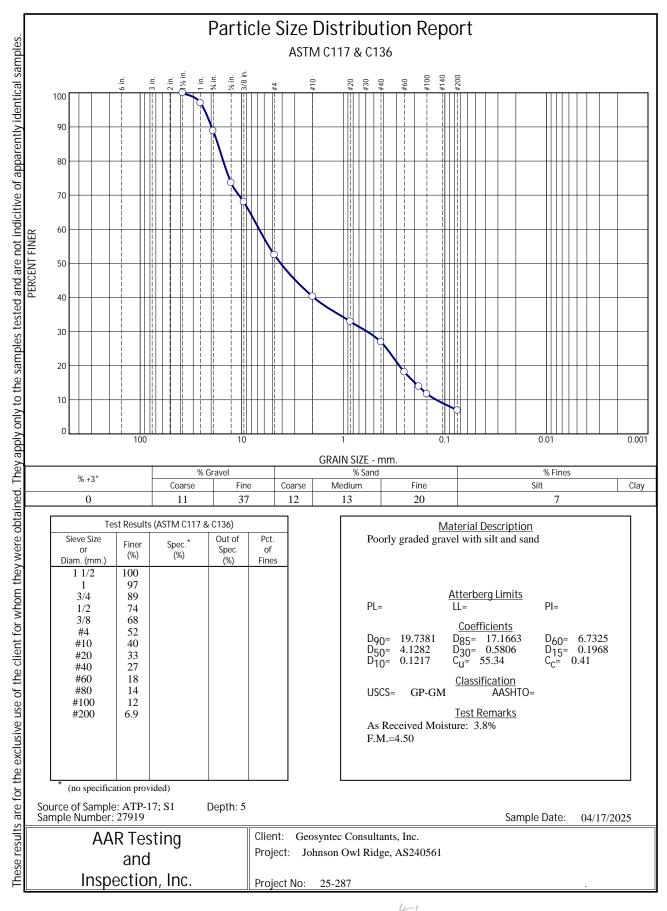
All four samples submitted for particle-size analyses and the two samples submitted for fines content determination were analyzed for water content by the ASTM D 2216 test method. This test method allows for the laboratory determination of the moisture (water) content of a soil sample by measuring and recording the mass of a sample before and then after drying. Test results are illustrated graphically on the logs in Appendix A.

### **B.2. Particle-Size Analyses, PF**


Two select soil samples were submitted for particle-size with #200 sieve analysis in general accordance with ASTM D-2216, D-2419, D-4318, and D-5821 methods. This test method allows for the laboratory determination of the percent of the size fractions (by weight) of coarse-grained soil and the percent of fines in a soil sample, as well as the grain size diameter percentages of the material. The result of the test is presented in this appendix as curves depicting the percent finer by weight versus particle size.

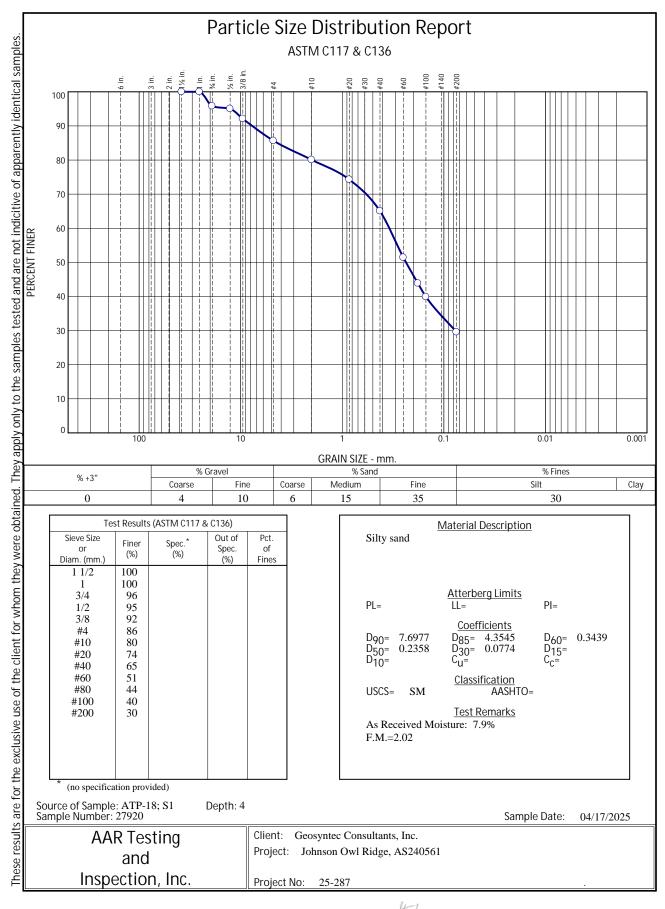
### **B.3. Fines Content Determination, FC**

The fines content was determined on four selected soil samples in general accordance with ASTM D1140. The results of the tests are shown in the table below, on the exploration logs, and tabulated in this appendix.


### **MOISTURE CONTENT / PERCENT FINER THAN #200**

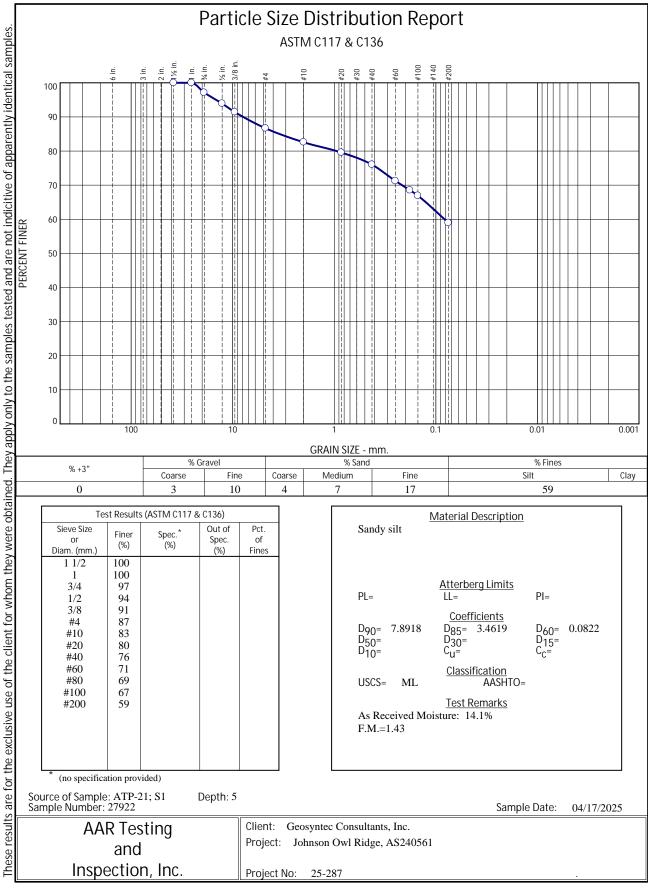
| AAR Project No.   | 25-287       |                 |        |        |        | Lab Number  |  | See below See below |  |  |  |  |
|-------------------|--------------|-----------------|--------|--------|--------|-------------|--|---------------------|--|--|--|--|
| Project Name      | Johnson Owl  | Ridge, AS2405   | 561    |        | -      | Sample ID   |  |                     |  |  |  |  |
| Client            | Geosyntec Co | onsultants, Inc |        |        | -      | Source      |  |                     |  |  |  |  |
| Sample By         | Chelsea Bush | า               |        |        | _      | Method (s)  |  | ASTM D2216, D1140   |  |  |  |  |
| Date Sample       | 4/17/2025    |                 |        |        | -      | Tested By   |  | Tama L.             |  |  |  |  |
| Date Received     | 5/6/2025     |                 |        |        | -      | Date Tested |  | 5/10/2025           |  |  |  |  |
| Lab No.           | 27917        | 27918           | 27919  | 27920  | 27921  | 27922       |  |                     |  |  |  |  |
| Boring / Location | ATP-16       | ATP-16          | ATP-17 | ATP-18 | ATP-19 | ATP-21      |  |                     |  |  |  |  |
| Sample / Depth    | S1/2         | S2/5            | S1/5   | S1/4   | S1/3   | S1/5        |  |                     |  |  |  |  |
| Desciption        | SP-SM        | ML              | GP-GM  | SM     | ML     | ML          |  |                     |  |  |  |  |
| Tare ID           | Jam          | MacBeth         | Head   | Taco   | Pink   | Row         |  |                     |  |  |  |  |
| Tare Weight       | 736.5        | 177.6           | 673.4  | 481.3  | 174    | 678.9       |  |                     |  |  |  |  |
| Wet & Tare Weight | 1807         | 929.3           | 2079.8 | 1687.4 | 891.1  | 2597.8      |  |                     |  |  |  |  |
| Dry & Tare Weight | 1687.6       | 796.4           | 2028.4 | 1599   | 727.4  | 2360.9      |  |                     |  |  |  |  |
| Washed & Tare     | 1620         | 389.1           | 1996.7 | 1314.5 | 237.6  | 1488.6      |  |                     |  |  |  |  |
| Moistue Content % | 12.6         | 21.5            | 3.8    | 7.9    | 29.6   | 14.1        |  |                     |  |  |  |  |
| Finer than 200 %  | Х            | 66              | Х      | х      | 89     | Х           |  |                     |  |  |  |  |
| Dry Weight        | 951.1        | 618.8           | 1355   | 1117.7 | 553.4  | 1682        |  |                     |  |  |  |  |
| Lab No.           |              |                 |        |        |        |             |  |                     |  |  |  |  |
| Boring / Location |              |                 |        |        |        |             |  |                     |  |  |  |  |
| Sample / Depth    |              |                 |        |        |        |             |  |                     |  |  |  |  |
| Description       |              |                 |        |        |        |             |  |                     |  |  |  |  |
| Tare ID           |              |                 |        |        |        |             |  |                     |  |  |  |  |
| Tare Weight       |              |                 |        |        |        |             |  |                     |  |  |  |  |
| Wet & Tare Weight |              |                 |        |        |        |             |  |                     |  |  |  |  |
| Dry & Tare Weight |              |                 |        |        |        |             |  |                     |  |  |  |  |
| Washed & Tare     |              |                 |        |        |        |             |  |                     |  |  |  |  |
| Moistue Content % |              |                 |        |        |        |             |  |                     |  |  |  |  |
| Finer than 200 %  |              |                 |        |        |        |             |  |                     |  |  |  |  |
| Dry Weight        |              |                 |        |        |        |             |  |                     |  |  |  |  |




Tested By: Tama Lewis #60698

Checked By: Stu Swenson, CET




Tested By: Tama Lewis #60698

Checked By: Stu Swenson, CET



Tested By: <u>Tama Lewis #60698</u> Checked

Checked By: Stu Swenson, CET



Tested By: <u>Tama Lewis #60698</u> Checked By: <u>Stu Swenson, CET</u>

Ste Sur

### **APPENDIX C**

**Report Limitations and Guidelines for Use** 

### REPORT LIMITATIONS AND GUIDELINES FOR USE

### **Geoscience is Not Exact**

The geoscience practices (geotechnical engineering, geology, and environmental science) are far less exact than other engineering and natural science disciplines. It is important to recognize this limitation in evaluating the content of the report. If you are unclear how these "Report Limitations and Guidelines for Use" apply to your project or property, you should contact Aspect Consulting (Aspect).

### This Report and Project-Specific Factors

Aspect's services are designed to meet the specific needs of our clients. Aspect has performed the services in general accordance with our agreement (the Agreement) with the Client (defined under the Limitations section of this project's work product). This report has been prepared for the exclusive use of the Client. This report should not be applied for any purpose or project except the purpose described in the Agreement.

Aspect considered many unique, project-specific factors when establishing the Scope of Work for this project and report. You should not rely on this report if it was:

- Not prepared for you;
- Not prepared for the specific purpose identified in the Agreement;
- Not prepared for the specific subject property assessed; or
- Completed before important changes occurred concerning the subject property, project, or governmental regulatory actions.

If changes are made to the project or subject property after the date of this report, Aspect should be retained to assess the impact of the changes with respect to the conclusions contained in the report.

### **Reliance Conditions for Third Parties**

This report was prepared for the exclusive use of the Client. No other party may rely on the product of our services unless we agree in advance to such reliance in writing. This is to provide our firm with reasonable protection against liability claims by third parties with whom there would otherwise be no contractual limitations. Within the limitations of scope, schedule, and budget, our services have been executed in accordance with our Agreement with the Client and recognized geoscience practices in the same locality and involving similar conditions at the time this report was prepared.

### **Property Conditions Change Over Time**

This report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by events such as a change in property use or occupancy, or by natural events, such as floods, earthquakes, slope instability, or groundwater fluctuations. If any of the described events may have occurred following the issuance of the report, you should contact Aspect so that we may evaluate whether changed conditions affect the continued reliability or applicability of our conclusions and recommendations.

# Geotechnical, Geologic, and Environmental Reports Are Not Interchangeable

The equipment, techniques, and personnel used to perform a geotechnical or geologic study differ significantly from those used to perform an environmental study and vice versa. For that reason, a geotechnical engineering or geologic report does not usually address any environmental findings, conclusions, or recommendations (e.g., about the likelihood of encountering underground storage tanks or regulated contaminants). Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding the subject property.

We appreciate the opportunity to perform these services. If you have any questions, please contact the Aspect Project Manager for this project.



## Pinnacle at Liberty Bay

Off-Site Analysis Report

May 20, 2025 Revised: November 12, 2025

Prepared for

Montebanc Management, LLC 400 NW Gilman Blvd. #2781 Issaquah, WA 98027

Paul Devenzio (206) 391-8366



"I hereby state that this Stormwater Drainage Report has been prepared by me or under my supervision and meets the standard of care and expertise which is usual and customary in this community of professional engineers. The analysis has been prepared utilizing procedures and practices specified by the City of Poulsbo and within the standard accepted practices of the industry. I understand that the City of Poulsbo does not and will not assume liability for the sufficiency, suitability or performance of stormwater drainage facilities prepared by me."

Submitted by

ESM Consulting Engineers, LLC 33400 8th Avenue S, Suite 205 Federal Way, WA 98003

253.838.6113 tel 253.838.7104 fax



www.esmcivil.com

### TABLE OF CONTENTS

|     | Introduction & Project Overview       |
|-----|---------------------------------------|
|     | FIGURES                               |
| 1.1 | Vicinity Map                          |
| 2.1 | Upstream Tributary Drainage Basin Map |
| 2.2 | Downstream Analysis Flowpath Map      |

### 1. INTRODUCTION & PROJECT OVERVIEW

This Off-Site Analysis Report has been prepared to discuss the potential drainage impacts associated with the project. The off-site analysis includes an investigation of the drainage conditions upstream and downstream of the site as well as identifying any downstream drainage constraints.

The proposed Pinnacle at Liberty Bay project is a planned residential development located in the southwest quarter of Section 24, Township 26 North, Range 1 East, W.M., in the City of Poulsbo, WA. The site is located on the north side of State Hwy 305 and situated east of the Plat of Baywatch at Poulsbo and west of the Plat of Cystal View. See Figure 1.1 below for Vicinity Map.

The subject property consists of four undeveloped parcels: 232601-4-001-2009, 242601-3-003-2008, 242601-3-018-2001, and 242601-3-005-2006 zoned RL, for a total of approximately 41 acres. The proposed project is a phased residential subdivision containing 148 detached single-family lots, pedestrian access, domestic water, sanitary sewer, public road improvements, utility services, open space, a stormwater detention pond and a stormwater detention vault.

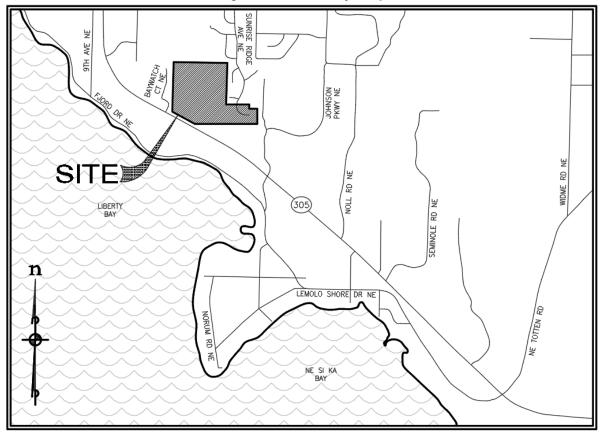



Figure 1.1 - Vicinity Map

### 2. QUALITATIVE ANALYSIS

The project site has three natural discharge locations. Natural discharge locations #1-1 and #1-2 converge within one-quarter mile downstream from the project site in Liberty Bay and their tributary areas are considered a single threshold discharge area. Natural discharge location #2-1 does not reach Liberty Bay within one-quarter mile and therefore is considered a separate threshold discharge area. Therefore, the project contains two threshold discharge areas. There are multiple upstream areas that discharge stormwater to the project site and are summarized below.

### Offsite - Upstream:

The first of the upstream areas that contribute stormwater to the project site include stormwater discharge from the Crystal View Plat's storm detention vault. Stormwater from the vault drains into the site by an 18-inch diameter storm pipe system located under an access road on the eastern side of the project site. These upsteam flows are treated by an 8'x16' Oldcastle Biopod system located along an onsite access road. The treated stormwater is ultimately conveyed downstream by the storm pipe system to an onsite stream on the east side of the project site. An 18" diameter energy dissipater tee and riprap mat are provided at the discharge location next to the stream. The project proposes to leave the existing 18-inch storm conveyance system and Biopod system in place.

The second upstream area contributing stormwater to the project site is located east of the Crystal View Plat and includes two single family residences, a shared-access driveway, and a stream located within the rear yard areas of these lots. Runoff generated from these upstream areas drain to project parcel 242601-3-005-2006. This upstream area is either conveyed through the project site by ditches and pipes beneath Sunrise Ridge Avenue NE and discharges to an offsite ditch located west of Johnson Road NE. Under post-developed conditions, the existing conveyance system will remain in place to maintain the existing drainage pattens for this upstream area.

The third upstream area contributing stormwater to the project site is from parcels 232601-4-008-2002 and 5465-000-076-0006. These upstream parcels located north of the project site are undeveloped and contain predominantly forest coverage. A small area of parcel 5465-000-076-0006 contributes runoff to the project site in the form of sheet flow and the remainder of the parcel is contributed to the project site as stream flow. Upstream parcel 232601-4-008-2002 contains a stream which drains into the site on the western side of the project site. This stream also collects runoff from parcel 232601-4-046-2006, which is developed as a public park (Frank Raab Park) and from parcel 5465-000-076-0006, previously described above.

Refer to Figure 2.1 for a map of the upstream tributary areas

Figure 2.1 - Upstream Tributary Area Map



### Offsite - Downstream:

The project site contains three natural discharge locations which are described below in conjunction with their corresponding downstream flowpaths.

Natural discharge location #1-1 (NDL #1-1) is located near the southwest corner of the project site and the stormwater discharge generally consists of stream flow and sheet flow. These flows combine within the existing roadside ditch on the northern side of State Hwy 305 NE and reach the upstream end of a 36-inch concrete culvert pipe, located near the southwest corner of the subject property. From this point, the culvert conveys site stormwater to the south side of the highway where it is discharged into Barrantes Creek. Upon being discharged from the culvert, the stormwater flows south along the creek until reaching an existing storm conveyance pipe system located on the north side of Lemolo Shore Dr NE. The stream is collected by an 18-inch CMP pipe and conveys the flows south to a storm catch basin and then east via 12-inch concrete pipe to a second storm catch basin. The flows are then conveyed south into Liberty Bay via a 36-inch concrete pipe. The downstream analysis was concluded at Liberty Bay which is located approximately 0.20 miles downstream from NDL #1-1.

Natural discharge location #1-2 (NDL #1-2) is centrally located along the south property line with stormwater discharge generally consisting of stream flow and sheet flow which discharge to parcels 252601-2-044-2000, 252601-2-047-2007, and 262601-1-001-2002. Parcel 252601-2-044-2000 is developed as a single-family residence while the other two parcels are undeveloped and consist of forest coverage. These three parcels drain to the roadside ditch located along the northern side of State Hwy 305 NE. Stormwater collected by the ditch drains into two 18-inch concrete culvert pipes which conveys the stormwater to the south side of the highway where it is discharged into separate swales. The swales converge at the upstream end of a 15-inch diameter HDPE pipe. The pipe conveys the flows further south to a storm catch basin with inlet and outlet offset for energy dissipation. The flows are then conveyed into Liberty Bay via a 15-inch diameter N-12 pipe. The downstream analysis was concluded at Liberty Bay which is located approximately 0.16 miles downstream from NDL #1-2.

Natural discharge location #2-1 (NDL #2-1) is located along the south property line on the eastern side of the site with stormwater discharge generally consisting of stream flow and sheet flow from project parcels 242601-3-018-2001 and 242601-3-005-2006. Stormwater from these parcels discharge into parcel 252601-2-034-2002 which is predominantly undeveloped and covered by forest. Stormwater is conveyed south through the parcel in the form of sheet flow and stream flow until combining within the roadside ditch located along the northern side of State Hwy 305 NE. The stormwater is collected by an 18" concrete culvert pipe which conveys the drainage to the south side of the highway where it is discharges to parcel 252601-2-053-2008. The stormwater is conveyed south through this parcel by sheet flow and shallow channel flow until reaching a roadside ditch located on the north side of Lemolo Shore Dr NE. The ditch conveys the flows to the west until reaching a 15-inch diameter CPEP pipe. The flows are collected by the pipe and drain west to a storm catch basin. The flows are then conveyed south under Lemolo Shore Drive NE and are discharged to Liberty Bay. The downstream analysis was concluded at Liberty Bay which is located approximately 0.33 miles downstream from NDL #2-1.

The downstream paths were investigated for the following potential problems:

- 1. Conveyance system capacity problems No known issues.
- 2. Localized flooding Stream C (Barrantes Creek), located within NDA #1-1 and downstream of the site, has been known to overflow during the wetter months of the year. Overflow from Barrantes Creek has been noted by City of Poulsbo staff to occur where the creek intersects with Lemolo Shore Drive, which is located approximately 910 feet downstream of the project site. No other known issues.
- 3. **Erosion impacts** No known issues.

- 4. **Violations of surface water quality standards** Impaired downstream water bodies were identified.
  - Liberty Bay (Category 5 303d, Dissolved Oxygen).

No negative drainage impacts are expected to be created by the project to the downstream drainage systems and properties based on the observations during this analysis.

Refer to Figure 2.2 for a map of the site's discharge locations and corresponding downstream flowpaths.

Figure 2.2 - Downstream Flowpath Map

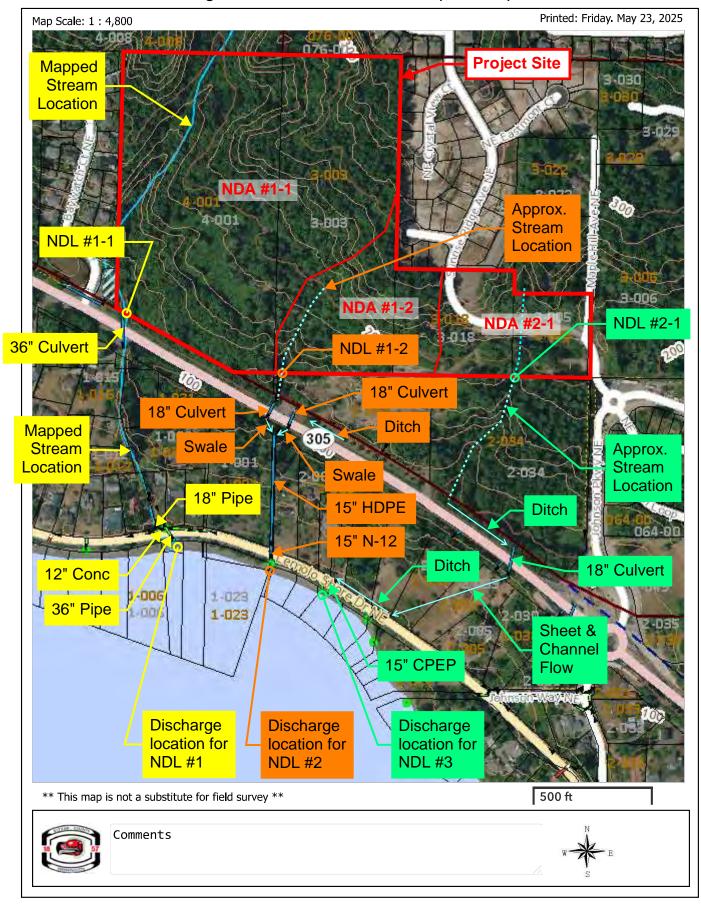
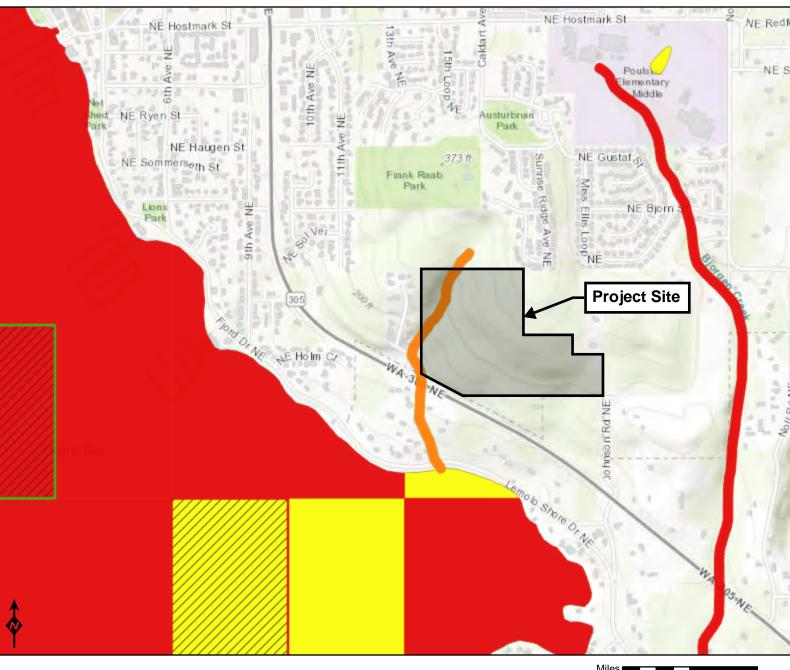




Figure 2.3 - Downstream 303(d) Water Quality Assessment Map



### **Assessed Water/Sediment**

### Water

Category 5 - 303d

Category 4C

Category 4B

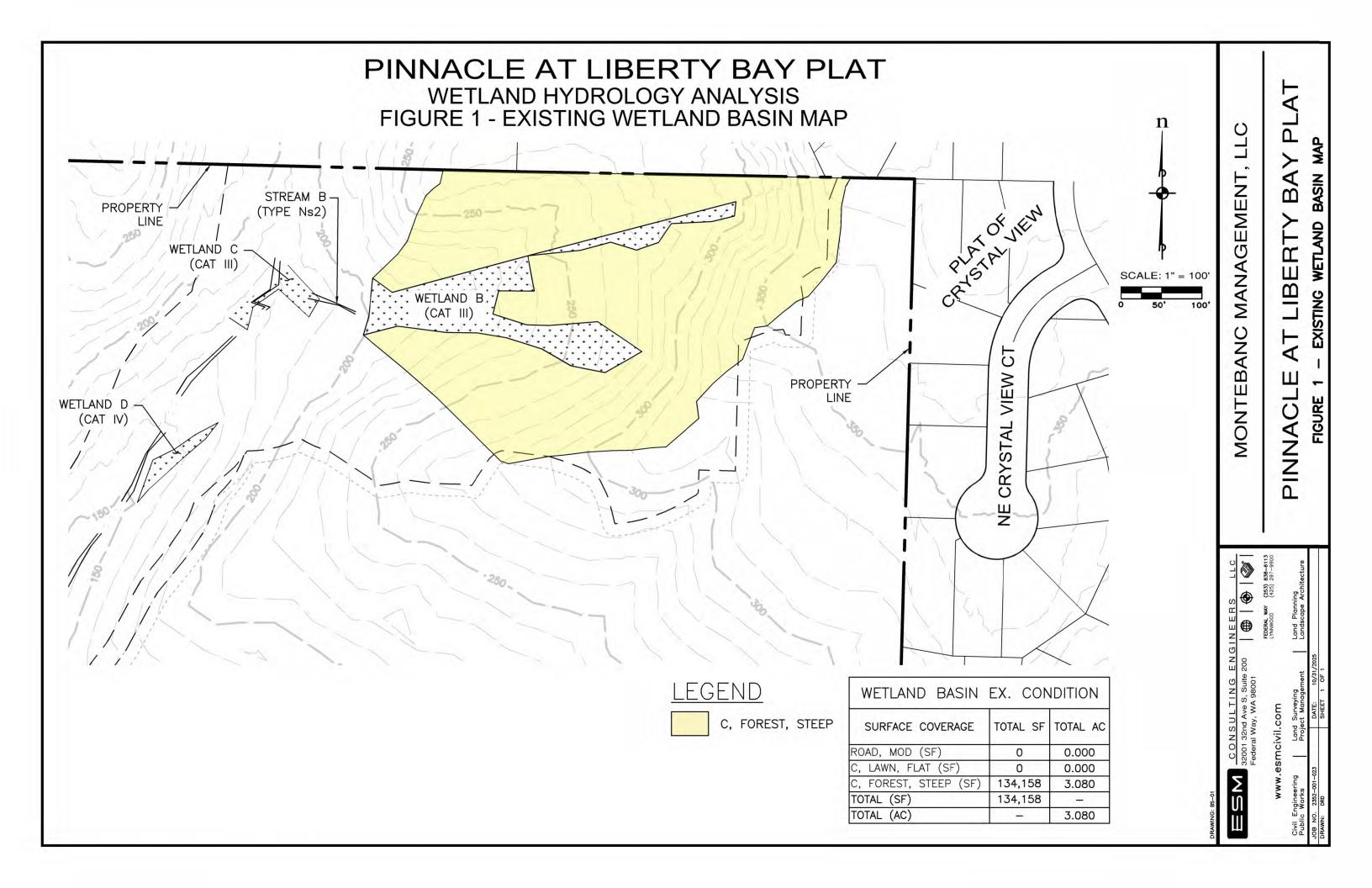
Category 4A Category 2

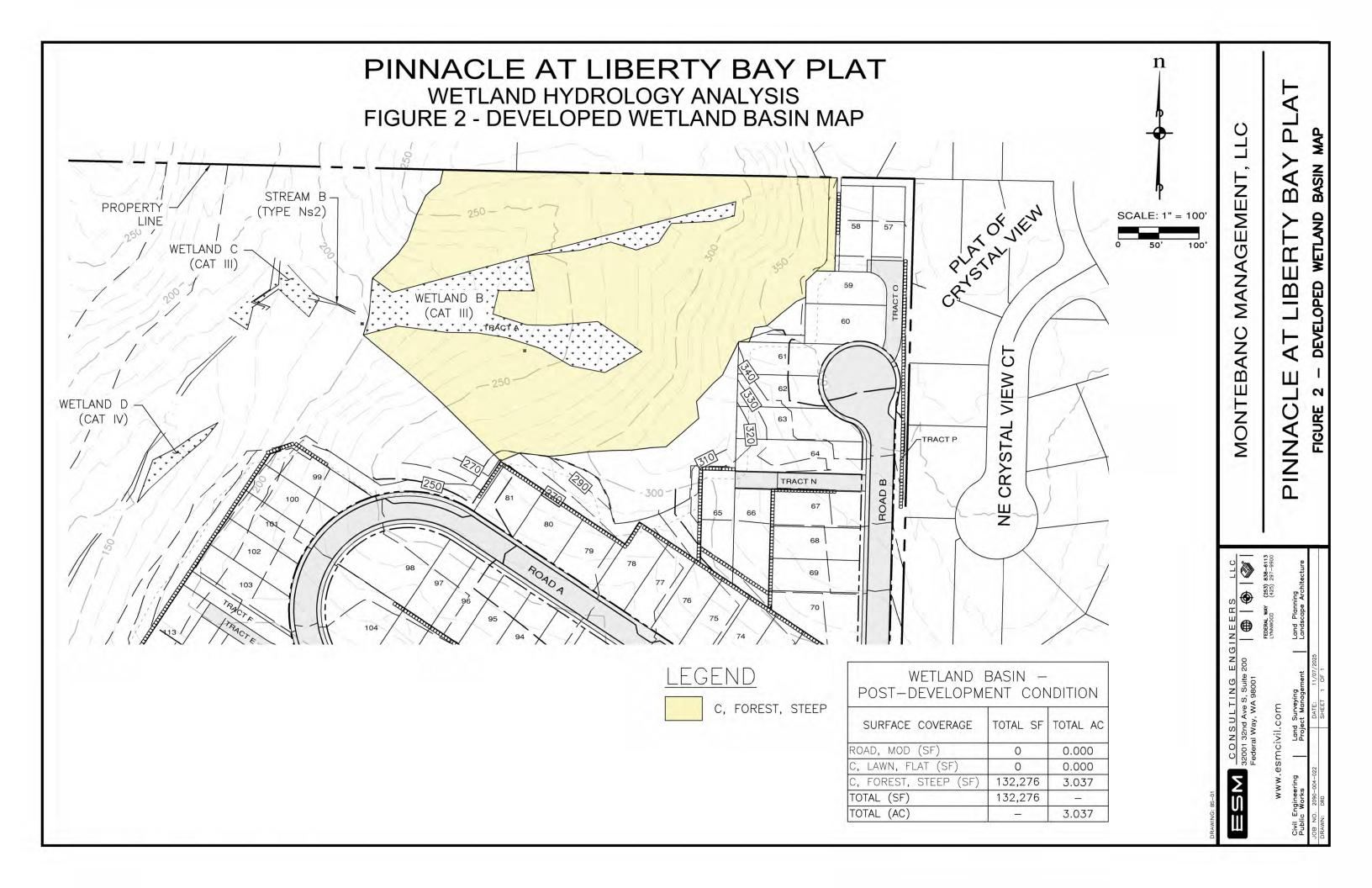
Category 1

### Sediment

Category 5 - 303d

Category 4C


Category 4B


Category 4A

Category 2

Category 1

# Appendix D - Wetland Hydroperiod Protection Analysis





# WWHM2012 PROJECT REPORT

WETLAND B
HYDROPERIOD
PROTECTION
ANALYSIS

### General Model Information

WWHM2012 Project Name: 2025-11-11 - Wetland Hyd Analysis

Site Name: Pinnacle at Liberty Bay

Site Address:

City: Poulsbo
Report Date: 11/11/2025
Gage: Quilcene
Data Start: 1948/10/01
Data End: 2009/09/30
Timestep: 15 Minute

Precip Scale: 0.800

Version Date: 2024/06/28

Version: 4.3.1

### **POC Thresholds**

Low Flow Threshold for POC1: 50 Percent of the 2 Year

High Flow Threshold for POC1: 50 Year

### Landuse Basin Data Predeveloped Land Use

### Pre-Developed Basin

Bypass: No

GroundWater: No

Pervious Land Use acre C, Forest, Steep 3.08

Pervious Total 3.08

Impervious Land Use acre

Impervious Total 0

Basin Total 3.08

Element Flow Componants: Surface Interflow

Componant Flows To:

POC 1 POC 1

Groundwater

### Mitigated Land Use

### **Developed Basin**

Bypass: No

GroundWater: No

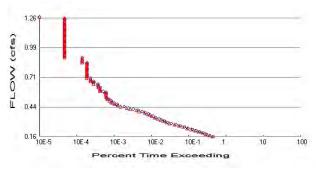
Pervious Land Use acre C, Forest, Steep 3.037

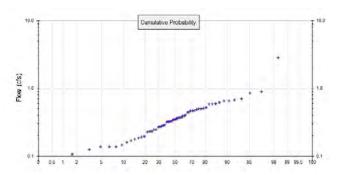
**Pervious Total** 3.037

Impervious Land Use acre

Impervious Total 0

Basin Total 3.037


Element Flow Componants: Surface Interflow


Componant Flows To: POC 1 POC 1 Groundwater

# Routing Elements Predeveloped Routing

### Mitigated Routing

# Analysis Results





+ Predeveloped x

x Mitigated

Predeveloped Landuse Totals for POC #1

Total Pervious Area: 3.08
Total Impervious Area: 0

Mitigated Landuse Totals for POC #1 Total Pervious Area: 3.037 Total Impervious Area: 0

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.328401

 5 year
 0.552368

 10 year
 0.737459

 25 year
 1.017054

 50 year
 1.261054

 100 year
 1.537826

Flow Frequency Return Periods for Mitigated. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.323816

 5 year
 0.544656

 10 year
 0.727164

 25 year
 1.002856

 50 year
 1.24345

 100 year
 1.516358

### **Annual Peaks**

Annual Peaks for Predeveloped and Mitigated. POC #1

| Year | Predeveloped | Mitigated |
|------|--------------|-----------|
| 1949 | 0.658        | 0.648     |
| 1950 | 0.197        | 0.195     |
| 1951 | 0.467        | 0.460     |
| 1952 | 0.226        | 0.223     |
| 1953 | 0.273        | 0.269     |
| 1954 | 0.655        | 0.646     |
| 1955 | 0.620        | 0.611     |
| 1956 | 2.844        | 2.804     |
| 1957 | 0.502        | 0.495     |
| 1958 | 0.680        | 0.671     |
|      |              |           |

| 1959<br>1960<br>1961<br>1962<br>1963<br>1964<br>1965<br>1966<br>1967<br>1968<br>1969<br>1970<br>1971<br>1972<br>1973<br>1974<br>1975<br>1976<br>1977<br>1978<br>1979<br>1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002 | 0.588 0.349 0.852 0.246 0.320 0.270 0.139 0.707 0.485 0.468 0.338 0.347 0.585 0.478 0.287 0.373 0.394 0.508 0.235 0.406 0.328 0.249 0.180 0.161 0.375 0.138 0.107 0.325 0.277 0.233 0.125 0.147 0.286 0.323 0.185 0.147 0.286 0.323 0.185 0.147 0.286 0.323 0.185 0.147 0.286 0.323 0.185 0.147 0.286 0.323 0.185 0.147 0.286 0.323 0.185 0.192 0.093 0.897 0.593 | 0.579 0.344 0.841 0.243 0.315 0.267 0.137 0.697 0.479 0.461 0.333 0.342 0.576 0.471 0.283 0.368 0.389 0.501 0.231 0.401 0.323 0.245 0.177 0.158 0.369 0.136 0.106 0.320 0.273 0.229 0.123 0.145 0.282 0.319 0.183 0.444 0.325 0.374 0.585 0.374 0.585 0.189 0.091 0.885 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2001                                                                                                                                                                                                                                                                                                                                                         | 0.093                                                                                                                                                                                                                                                                                                                                                             | 0.091                                                                                                                                                                                                                                                                   |
| 2002                                                                                                                                                                                                                                                                                                                                                         | 0.897                                                                                                                                                                                                                                                                                                                                                             | 0.885                                                                                                                                                                                                                                                                   |
| 2003                                                                                                                                                                                                                                                                                                                                                         | 0.527                                                                                                                                                                                                                                                                                                                                                             | 0.520                                                                                                                                                                                                                                                                   |
| 2004                                                                                                                                                                                                                                                                                                                                                         | 0.171                                                                                                                                                                                                                                                                                                                                                             | 0.168                                                                                                                                                                                                                                                                   |
| 2005                                                                                                                                                                                                                                                                                                                                                         | 0.395                                                                                                                                                                                                                                                                                                                                                             | 0.390                                                                                                                                                                                                                                                                   |
| 2006                                                                                                                                                                                                                                                                                                                                                         | 0.501                                                                                                                                                                                                                                                                                                                                                             | 0.494                                                                                                                                                                                                                                                                   |
| 2007                                                                                                                                                                                                                                                                                                                                                         | 0.354                                                                                                                                                                                                                                                                                                                                                             | 0.349                                                                                                                                                                                                                                                                   |
| 2008                                                                                                                                                                                                                                                                                                                                                         | 0.366                                                                                                                                                                                                                                                                                                                                                             | 0.361                                                                                                                                                                                                                                                                   |
| 2009                                                                                                                                                                                                                                                                                                                                                         | 0.139                                                                                                                                                                                                                                                                                                                                                             | 0.137                                                                                                                                                                                                                                                                   |

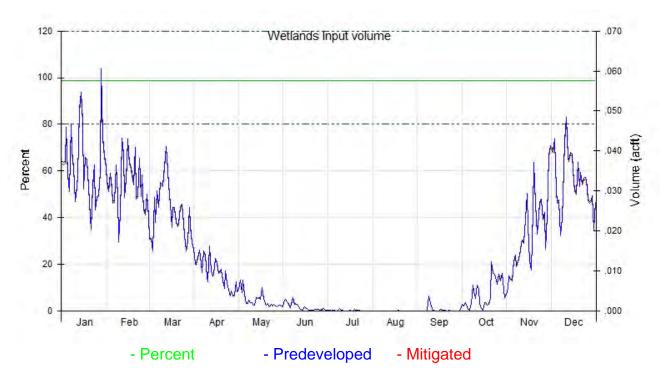
### Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1

| Rank | Predeveloped |        |
|------|--------------|--------|
| 1    | 2.8437       | 2.8040 |
| 2    | 0.8970       | 0.8845 |
| 3    | 0.8525       | 0.8406 |

#### **Duration Flows**

## The Facility PASSED


| Flow(cfs)        | Predev     | Mit  | Percentage | Pass/Fail |
|------------------|------------|------|------------|-----------|
| 0.1642           | 9638       | 9225 | 95         | Pass      |
| 0.1753           | 7833       | 7501 | 95<br>95   | Pass      |
| 0.1764           | 6404       | 6085 | 95         | Pass      |
| 0.1974           | 5161       | 4896 | 94         | Pass      |
| 0.1974           | 4205       | 3959 | 94         | Pass      |
| 0.2196           | 3388       | 3206 | 94         | Pass      |
| 0.2307           | 2689       | 2500 | 92         | Pass      |
| 0.2418           | 2009       | 1941 | 92<br>92   | Pass      |
| 0.2528           | 1652       | 1518 | 91         | Pass      |
| 0.2639           | 1266       | 1171 | 92         | Pass      |
| 0.2039           | 969        | 889  | 91         | Pass      |
| 0.2861           | 723        | 663  | 91         | Pass      |
| 0.2972           |            | 537  | 92         |           |
|                  | 578<br>470 | 448  |            | Pass      |
| 0.3082<br>0.3193 | 479        | 374  | 93         | Pass      |
|                  | 398        |      | 93         | Pass      |
| 0.3304           | 345        | 309  | 89         | Pass      |
| 0.3415           | 280        | 260  | 92         | Pass      |
| 0.3525           | 237        | 218  | 91         | Pass      |
| 0.3636           | 200        | 190  | 95         | Pass      |
| 0.3747           | 181        | 165  | 91         | Pass      |
| 0.3858           | 151        | 140  | 92         | Pass      |
| 0.3969           | 120        | 101  | 84         | Pass      |
| 0.4079           | 94         | 85   | 90         | Pass      |
| 0.4190           | 70         | 58   | 82         | Pass      |
| 0.4301           | 52         | 46   | 88         | Pass      |
| 0.4412           | 40         | 32   | 80         | Pass      |
| 0.4523           | 27         | 27   | 100        | Pass      |
| 0.4633           | 26         | 22   | 84         | Pass      |
| 0.4744           | 22         | 19   | 86         | Pass      |
| 0.4855           | 19         | 18   | 94         | Pass      |
| 0.4966           | 18         | 16   | 88         | Pass      |
| 0.5077           | 16         | 14   | 87         | Pass      |
| 0.5187           | 14         | 14   | 100        | Pass      |
| 0.5298           | 13         | 13   | 100        | Pass      |
| 0.5409           | 13         | 13   | 100        | Pass      |
| 0.5520           | 13         | 13   | 100        | Pass      |
| 0.5631           | 13         | 13   | 100        | Pass      |
| 0.5741           | 13         | 12   | 92         | Pass      |
| 0.5852           | 11         | 9    | 81         | Pass      |
| 0.5963           | 9          | 9    | 100        | Pass      |
| 0.6074           | 9          | 9    | 100        | Pass      |
| 0.6185           | 9          | 8    | 88         | Pass      |
| 0.6295           | 8          | 8    | 100        | Pass      |
| 0.6406           | 8          | 8    | 100        | Pass      |
| 0.6517           | 8          | 6    | 75         | Pass      |
| 0.6628           | 6          | 6    | 100        | Pass      |
| 0.6738           | 6          | 5    | 83         | Pass      |
| 0.6849           | 5          | 5    | 100        | Pass      |
| 0.6960           | 5          | 5    | 100        | Pass      |
| 0.7071           | 5          | 4    | 80         | Pass      |
| 0.7182           | 4          | 4    | 100        | Pass      |
| 0.7292           | 4          | 4    | 100        | Pass      |
| 0.7403           | 4          | 4    | 100        | Pass      |

| 0.7514 | 4                                     | 4                | 100  | Pass  |
|--------|---------------------------------------|------------------|------|-------|
| 0.7625 | 4                                     | 4                | 100  |       |
|        |                                       |                  |      | Pass  |
| 0.7736 | 4                                     | 4                | 100  | Pass  |
| 0.7846 | 4                                     | 4                | 100  | Pass  |
| 0.7957 | 4                                     | 4                | 100  | Pass  |
| 0.8068 | 4                                     | 4                | 100  | Pass  |
| 0.8179 | 4                                     | 4                | 100  | Pass  |
|        |                                       |                  |      |       |
| 0.8290 | 4                                     | 4                | 100  | Pass  |
| 0.8400 | 4                                     | 4                | 100  | Pass  |
| 0.8511 | 4                                     | 3                | 75   | Pass  |
| 0.8622 | 3                                     | 3                | 100  | Pass  |
| 0.8733 | 3                                     | 3                | 100  | Pass  |
| 0.8844 | 3                                     | 3                | 100  | Pass  |
| 0.8954 | 3<br>3<br>3<br>3                      | 3<br>3<br>3<br>1 | 33   | Pass  |
|        | 3<br>1                                | -                |      | Pass  |
| 0.9065 | •                                     | 1                | 100  | Pass  |
| 0.9176 | 1                                     | 1                | 100  | Pass  |
| 0.9287 | 1                                     | 1                | 100  | Pass  |
| 0.9398 | 1                                     | 1                | 100  | Pass  |
| 0.9508 | 1                                     | 1                | 100  | Pass  |
| 0.9619 | <u>i</u>                              | 1                | 100  | Pass  |
| 0.9730 | 1                                     | 1                |      |       |
|        | = = = = = = = = = = = = = = = = = = = |                  | 100  | Pass  |
| 0.9841 | 1                                     | 1                | 100  | Pass  |
| 0.9952 | 1                                     | 1                | 100  | Pass  |
| 1.0062 | 1                                     | 1                | 100  | Pass  |
| 1.0173 | 1                                     | 1                | 100  | Pass  |
| 1.0284 | 1                                     | 1                | 100  | Pass  |
| 1.0395 | <u>i</u>                              | 1                | 100  | Pass  |
| 1.0505 | 1                                     | 1                | 100  |       |
|        | = = = = = = = = = = = = = = = = = = = |                  |      | Pass  |
| 1.0616 | 1                                     | 1                | 100  | Pass  |
| 1.0727 | 1                                     | 1                | 100  | Pass  |
| 1.0838 | 1                                     | 1                | 100  | Pass  |
| 1.0949 | 1                                     | 1                | 100  | Pass  |
| 1.1059 | 1                                     | 1                | 100  | Pass  |
| 1.1170 | 1                                     | 1                | 100  | Pass  |
| 1.1281 | 1                                     | i                | 100  | Pass  |
|        | •                                     | =                |      | Pass  |
| 1.1392 | 1                                     | 1                | 100  | Pass  |
| 1.1503 | 1                                     | 1                | 100  | Pass  |
| 1.1613 | 1                                     | 1                | 100  | Pass  |
| 1.1724 | 1                                     | 1                | 100  | Pass  |
| 1.1835 | 1                                     | 1                | 100  | Pass  |
| 1.1946 | 1                                     | 1                | 100  | Pass  |
| 1.2057 | 1                                     | i                | 100  | Pass  |
|        | = = = = = = = = = = = = = = = = = = = | -                |      |       |
| 1.2167 | 1                                     | 1                | 100  | Pass  |
| 1.2278 | 1                                     | 1                | 100  | Pass  |
| 1.2389 | 1                                     | 1                | 100  | Pass  |
| 1.2500 | 1                                     | 1                | 100  | Pass  |
| 1.2611 | 1                                     | 1                | 100  | Pass  |
| 5      | •                                     | •                | . 55 | . 400 |

## Water Quality

Water Quality
Water Quality BMP Flow and Volume for POC #1
On-line facility volume: 0 acre-feet
On-line facility target flow: 0 cfs.
Adjusted for 15 min: 0 cfs.
Off-line facility target flow: 0 cfs.
Adjusted for 15 min: 0 cfs.

#### Wetland Input Volumes



Wetlands Input Volume for POC 1 Average Annual Volume (acft) Series 1: 501 POC 1 Predeveloped flow Series 2: 801 POC 1 Mitigated flow

|                                                          |                                                                                                            | mingatou ne                                                                                                |                                                              | Ī                                                    | Excursion |                           |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|-----------|---------------------------|
| Month                                                    | Series 1                                                                                                   | Series 2                                                                                                   | Percent                                                      |                                                      |           | ) Mitigated(cm) Pass/Fail |
| Jan                                                      | 1.1347                                                                                                     | 1.1189                                                                                                     | 98.6                                                         |                                                      | •         | , 3 ( )                   |
| Feb                                                      | 0.9120                                                                                                     | 0.8992                                                                                                     | 98.6                                                         | Pass                                                 |           |                           |
| Mar                                                      | 0.7826                                                                                                     | 0.7717                                                                                                     | 98.6                                                         | Pass                                                 |           |                           |
| Apr                                                      | 0.2927                                                                                                     | 0.2886                                                                                                     | 98.6                                                         | Pass                                                 |           |                           |
| May                                                      | 0.0869                                                                                                     | 0.0857                                                                                                     | 98.6                                                         |                                                      |           |                           |
| Jun                                                      | 0.0289                                                                                                     | 0.0285                                                                                                     | 98.6                                                         |                                                      |           |                           |
| Jul                                                      | 0.0033                                                                                                     | 0.0032                                                                                                     | 98.6                                                         |                                                      |           |                           |
| Aug                                                      | 0.0005                                                                                                     | 0.0005                                                                                                     | 98.6                                                         |                                                      |           |                           |
| Sep                                                      | 0.0081                                                                                                     | 0.0080                                                                                                     | 98.6                                                         |                                                      |           |                           |
| Oct                                                      | 0.1317                                                                                                     | 0.1299                                                                                                     | 98.6                                                         |                                                      |           |                           |
| Nov                                                      | 0.5616                                                                                                     | 0.5538                                                                                                     | 98.6                                                         |                                                      |           |                           |
| Dec                                                      | 1.0294                                                                                                     | 1.0150                                                                                                     | 98.6                                                         | Pass                                                 |           |                           |
|                                                          |                                                                                                            |                                                                                                            |                                                              |                                                      |           |                           |
| Day                                                      | Predevel                                                                                                   | Mitigated                                                                                                  | Percent                                                      | Pass/Fail                                            |           |                           |
| <b>Day</b><br>.lan1                                      | Predevel                                                                                                   | Mitigated                                                                                                  | Percent<br>98.6                                              | Pass/Fail                                            |           |                           |
| Jan1                                                     | 0.0373                                                                                                     | 0.0368                                                                                                     | 98.6                                                         | Pass                                                 |           |                           |
| Jan1                                                     | 0.0373<br>0.0371                                                                                           | 0.0368<br>0.0365                                                                                           | 98.6<br>98.6                                                 | Pass<br>Pass                                         |           |                           |
| Jan1<br>2<br>3                                           | 0.0373<br>0.0371<br>0.0374                                                                                 | 0.0368<br>0.0365<br>0.0369                                                                                 | 98.6<br>98.6<br>98.6                                         | Pass<br>Pass<br>Pass                                 |           |                           |
| Jan1<br>2<br>3                                           | 0.0373<br>0.0371<br>0.0374<br>0.0460                                                                       | 0.0368<br>0.0365<br>0.0369<br>0.0453                                                                       | 98.6<br>98.6<br>98.6<br>98.6                                 | Pass<br>Pass<br>Pass<br>Pass                         |           |                           |
| Jan1<br>2<br>3                                           | 0.0373<br>0.0371<br>0.0374<br>0.0460<br>0.0344                                                             | 0.0368<br>0.0365<br>0.0369<br>0.0453<br>0.0339                                                             | 98.6<br>98.6<br>98.6<br>98.6<br>98.6                         | Pass<br>Pass<br>Pass<br>Pass<br>Pass                 |           |                           |
| Jan1                                                     | 0.0373<br>0.0371<br>0.0374<br>0.0460                                                                       | 0.0368<br>0.0365<br>0.0369<br>0.0453                                                                       | 98.6<br>98.6<br>98.6<br>98.6<br>98.6<br>98.6                 | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass         |           |                           |
| Jan1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                  | 0.0373<br>0.0371<br>0.0374<br>0.0460<br>0.0344<br>0.0302                                                   | 0.0368<br>0.0365<br>0.0369<br>0.0453<br>0.0339<br>0.0298                                                   | 98.6<br>98.6<br>98.6<br>98.6<br>98.6<br>98.6                 | Pass<br>Pass<br>Pass<br>Pass<br>Pass                 |           |                           |
| Jan1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                  | 0.0373<br>0.0371<br>0.0374<br>0.0460<br>0.0344<br>0.0302<br>0.0468                                         | 0.0368<br>0.0365<br>0.0369<br>0.0453<br>0.0339<br>0.0298<br>0.0461                                         | 98.6<br>98.6<br>98.6<br>98.6<br>98.6<br>98.6<br>98.6         | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |           |                           |
| Jan1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10       | 0.0373<br>0.0371<br>0.0374<br>0.0460<br>0.0344<br>0.0302<br>0.0468<br>0.0403<br>0.0360<br>0.0277           | 0.0368<br>0.0365<br>0.0369<br>0.0453<br>0.0339<br>0.0298<br>0.0461<br>0.0398<br>0.0355<br>0.0273           | 98.6<br>98.6<br>98.6<br>98.6<br>98.6<br>98.6<br>98.6<br>98.6 | Pass Pass Pass Pass Pass Pass Pass Pass              |           |                           |
| Jan1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11 | 0.0373<br>0.0371<br>0.0374<br>0.0460<br>0.0344<br>0.0302<br>0.0468<br>0.0403<br>0.0360<br>0.0277<br>0.0311 | 0.0368<br>0.0365<br>0.0369<br>0.0453<br>0.0339<br>0.0298<br>0.0461<br>0.0398<br>0.0355<br>0.0273<br>0.0307 | 98.6<br>98.6<br>98.6<br>98.6<br>98.6<br>98.6<br>98.6<br>98.6 | Pass Pass Pass Pass Pass Pass Pass Pass              |           |                           |
| Jan1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10       | 0.0373<br>0.0371<br>0.0374<br>0.0460<br>0.0344<br>0.0302<br>0.0468<br>0.0403<br>0.0360<br>0.0277           | 0.0368<br>0.0365<br>0.0369<br>0.0453<br>0.0339<br>0.0298<br>0.0461<br>0.0398<br>0.0355<br>0.0273           | 98.6<br>98.6<br>98.6<br>98.6<br>98.6<br>98.6<br>98.6<br>98.6 | Pass Pass Pass Pass Pass Pass Pass Pass              |           |                           |

| 14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>22<br>22<br>23<br>31<br>45<br>67<br>89<br>10<br>11<br>21<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>20<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21 | 0.0547<br>0.0477<br>0.0308<br>0.0384<br>0.0380<br>0.0313<br>0.0274<br>0.0205<br>0.0314<br>0.0366<br>0.0256<br>0.0287<br>0.0290<br>0.0349<br>0.0606<br>0.0327<br>0.0303<br>0.0344<br>0.0309<br>0.0272<br>0.0275<br>0.0365<br>0.0293<br>0.0176<br>0.0244<br>0.0432<br>0.0293<br>0.0176<br>0.0244<br>0.0395<br>0.0288<br>0.0331<br>0.0430<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0368<br>0.0371<br>0.0284<br>0.0393<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0293<br>0.0294<br>0.0301<br>0.0262<br>0.0301<br>0.0262 | 0.0539 0.0470 0.0304 0.0379 0.0375 0.0309 0.0270 0.0203 0.0310 0.0361 0.0252 0.0283 0.0286 0.0345 0.0598 0.0430 0.0385 0.0356 0.0322 0.0299 0.0339 0.0305 0.0269 0.0271 0.0360 0.0289 0.0174 0.0241 0.0426 0.0390 0.0284 0.0327 0.0424 0.0366 0.0363 0.0341 0.0315 0.0404 0.0280 0.0284 0.0377 0.0424 0.0366 0.0363 0.0341 0.0315 0.0404 0.0280 0.0284 0.0377 0.0286 0.0335 0.0253 0.0240 0.0289 0.0253 0.0253 0.0253 0.0253 0.0253 0.0253 0.0253 0.0253 | $\begin{array}{c} 6.66.66.66.66.66.66.66.66.66.66.66.66.6$ | PASS S S S S S S S S S S S S S S S S S S |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------|
| 5<br>6<br>7<br>8<br>9<br>10<br>11                                                                                                                                                                                                                        | 0.0224<br>0.0301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0221<br>0.0297                                                                                                                                                                                                                                                                                                                                                                                                                                         | 98.6                                                       | Pass<br>Pass                             |

| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>20<br>31<br>31<br>45<br>67<br>89<br>10<br>11<br>21<br>31<br>45<br>10<br>11<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21 | 0.0410<br>0.0387<br>0.0320<br>0.0268<br>0.0212<br>0.0258<br>0.0258<br>0.0223<br>0.0214<br>0.0219<br>0.0261<br>0.0268<br>0.0221<br>0.0190<br>0.0153<br>0.0175<br>0.0258<br>0.0215<br>0.0171<br>0.0157<br>0.0157<br>0.0157<br>0.0153<br>0.0121<br>0.0097<br>0.0153<br>0.0121<br>0.0097<br>0.0150<br>0.0162<br>0.0101<br>0.0085<br>0.0074<br>0.0085<br>0.0074<br>0.0097<br>0.0162<br>0.0101<br>0.0097<br>0.0093<br>0.0121<br>0.0097<br>0.0056<br>0.0099<br>0.0070<br>0.0054<br>0.0037<br>0.0050<br>0.0037<br>0.0050<br>0.0072<br>0.0045<br>0.0077<br>0.0045<br>0.0077<br>0.0045<br>0.0077 | 0.0404 0.0382 0.0316 0.0264 0.0209 0.0255 0.0254 0.0220 0.0211 0.0216 0.0258 0.0264 0.0218 0.0187 0.0151 0.0173 0.0255 0.0212 0.0169 0.0155 0.0116 0.0115 0.0119 0.0096 0.0148 0.0138 0.0084 0.0073 0.0160 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 0.0086 0.0099 | 66666666666666666666666666666666666666 | Pass s s s s s s s s s s s s s s s s s s |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------|
|                                                                                                                                                                                                                                                                            | 0.0077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.6                                   | Pass                                     |
|                                                                                                                                                                                                                                                                            | 0.0045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.6                                   | Pass                                     |

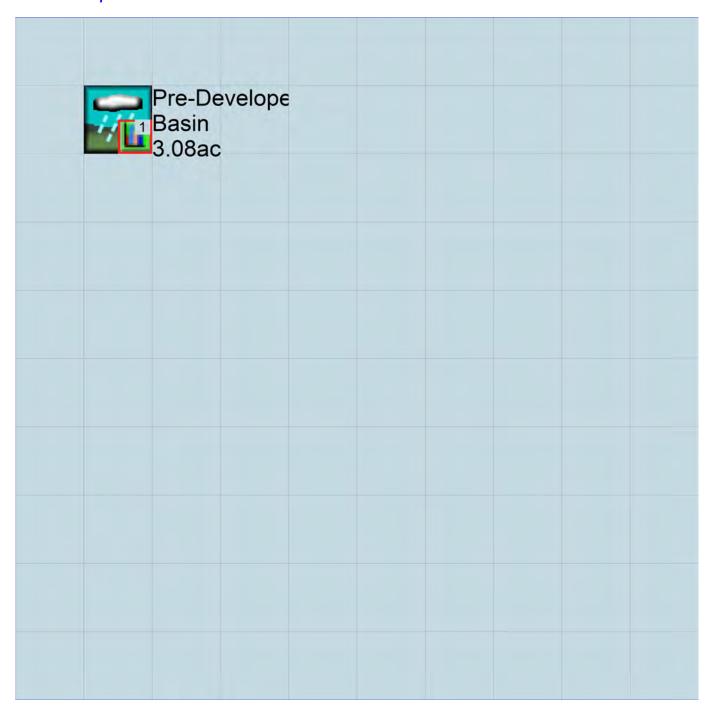
| 9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>31<br>56<br>78<br>9<br>10<br>11<br>21<br>31<br>21<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31 | 0.0021 0.0021 0.0021 0.0015 0.0015 0.0034 0.0031 0.0032 0.0030 0.0057 0.0031 0.0019 0.0015 0.0018 0.0011 0.0016 0.0013 0.0017 0.0012 0.0010 0.0014 0.0015 0.0013 0.0011 0.0027 0.0029 0.0023 0.0018 0.0018 0.0017 0.0029 0.0023 0.0018 0.0017 0.0032 0.0018 0.0017 0.0032 0.0018 0.0017 0.0003 0.0010 0.0003 0.0010 0.0003 0.00010 0.0005 0.0002 0.0002 0.0002 0.0002 0.0002 0.0003 0.0005 0.0002 0.0003 0.0005 0.0002 0.0003 0.0005 0.0003 0.0005 0.0003 0.0005 0.0003 | 0.0021 0.0021 0.0015 0.0015 0.0033 0.0031 0.0032 0.0029 0.0057 0.0031 0.0019 0.0015 0.0018 0.0011 0.0016 0.0013 0.0017 0.0012 0.0010 0.0014 0.0014 0.0013 0.0017 0.0026 0.0029 0.0023 0.0017 0.0009 0.0017 0.0009 0.0017 0.00010 0.0015 0.0017 0.00010 0.00010 0.0003 0.00017 0.00010 0.0003 0.00010 0.0003 0.00010 0.0003 0.00010 0.0003 0.00010 0.0005 0.0002 0.0001 0.0002 0.0002 0.0002 0.0003 0.0002 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 | 98.66.66.66.66.66.66.66.66.66.66.66.66.66    | Pass s s s s s s s s s s s s s s s s s s |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------|
| 29<br>30                                                                                                                                                                                                                                                                                                                             | 0.0002<br>0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0002<br>0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.6  <br>98.6  <br>98.6  <br>98.6  <br>98.6 | Pass<br>Pass                             |

| 67891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101121314567891011213145678910112131456789101101101101101101101101101101101101101 | 0.0001 0.0000 0.0003 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0001 0.0003 0.0003 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 98.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6 | Pass Pass Pass Pass Pass Pass Pass Pass |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                         |

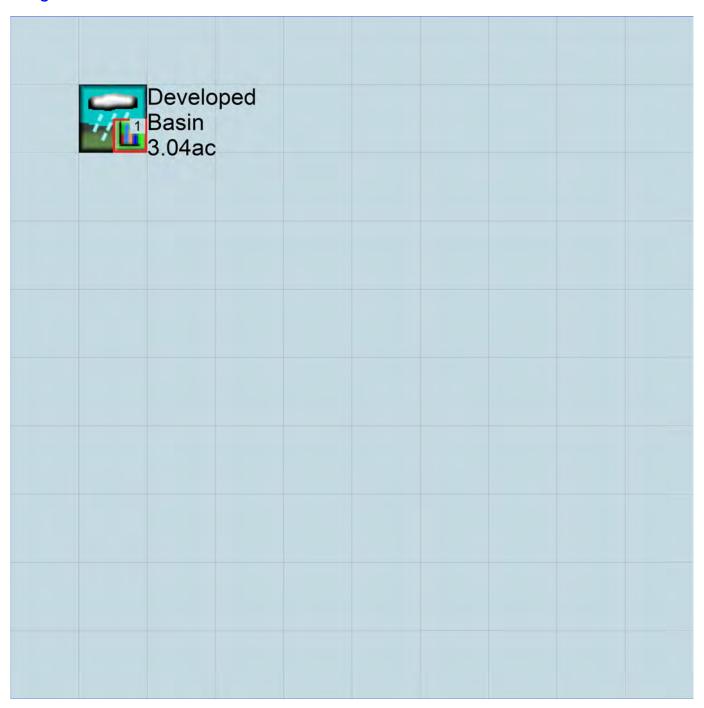
| 27 | 0.0274 | 0.0270 | 98.6 Pass |
|----|--------|--------|-----------|
| 28 | 0.0278 | 0.0274 | 98.6 Pass |
| 29 | 0.0289 | 0.0285 | 98.6 Pass |
| 30 | 0.0206 | 0.0203 | 98.6 Pass |
| 31 | 0.0273 | 0.0269 | 98.6 Pass |

### Model Default Modifications

Total of 0 changes have been made.


#### **PERLND Changes**

No PERLND changes have been made.


#### **IMPLND Changes**

No IMPLND changes have been made.

# Appendix Predeveloped Schematic



# Mitigated Schematic



#### Predeveloped UCI File

RUN

```
GLOBAL
 WWHM4 model simulation
                      END
3 0
 START 1948 10 01
                               2009 09 30
 RUN INTERP OUTPUT LEVEL
 RESUME 0 RUN 1
                                    UNIT SYSTEM 1
END GLOBAL
FILES
             <---->***
<File> <Un#>
<-ID->
WDM
         26
             2025-11-11 - Wetland Hyd Analysis.wdm
MESSU
         25
            Pre2025-11-11 - Wetland Hyd Analysis.MES
             Pre2025-11-11 - Wetland Hyd Analysis.L61
         27
             Pre2025-11-11 - Wetland Hyd Analysis.L62
             POC2025-11-11 - Wetland Hyd Analysis1.dat
         30
END FILES
OPN SEQUENCE
   INGRP
             12
                  INDELT 00:15
    PERLND
              501
    COPY
    DISPLY
   END INGRP
END OPN SEQUENCE
DISPLY
 DISPLY-INFO1
   # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
   1 Pre-Developed Basin MAX
                                                      1 2 30
 END DISPLY-INFO1
END DISPLY
COPY
 TIMESERIES
  # - # NPT NMN ***
   1 1
)1 1
              1
 501
                1
 END TIMESERIES
END COPY
GENER
 OPCODE
 # # OPCD ***
 END OPCODE
 PARM
            K ***
  #
 END PARM
END GENER
PERLND
 GEN-INFO
   <PLS ><----Name---->NBLKS Unit-systems Printer ***
                         User t-series Engl Metr ***
                                    in out
                             1
  12 C, Forest, Steep
 END GEN-INFO
 *** Section PWATER***
 ACTIVITY
  # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
12 0 0 1 0 0 0 0 0 0 0 0
 END ACTIVITY
 PRINT-INFO
   <PLS > ********* Print-flags *************** PIVL PYR
  # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC **********
12 0 0 4 0 0 0 0 0 0 0 0 0 1 9
 END PRINT-INFO
```

```
PWAT-PARM1
   <PLS > PWATER variable monthly parameter value flags ***
  # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***
12 0 0 0 0 0 0 0 0 0 0
 END PWAT-PARM1
 PWAT-PARM2
  - <del>п</del> - - - 0
 END PWAT-PARM2
 PWAT-PARM3
  PWAT-PARM3

<PLS > PWATER input info: Part 3 ***

# - # ***PETMAX PETMIN INFEXP INFILD DEEPFR
12 0 0 0 2 2 0
                                                           BASETP
                                                 0 0
 END PWAT-PARM3
 PWAT-PARM4
   <PLS > PWATER input info: Part 4
  # - # CEPSC UZSN NSUR INTFW IRC LZETP ***
12 0.2 0.3 0.35 6 0.3 0.7
 END PWAT-PARM4
 PWAT-STATE1
   <PLS > *** Initial conditions at start of simulation
    ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
       # *** CEPS SURS UZS IFWS LZS AGWS 0 0 0 0 2.5 1
                                                                     GWVS
  12
 END PWAT-STATE1
END PERLND
IMPLND
 GEN-INFO
   <PLS ><-----Name----> Unit-systems Printer ***
   # - #
                           User t-series Engl Metr ***
                                  in out
 END GEN-INFO
 *** Section IWATER***
 ACTIVITY
   <PLS > ******** Active Sections *********************
   # - # ATMP SNOW IWAT SLD IWG IQAL ***
 END ACTIVITY
 PRINT-INFO
   <ILS > ******* Print-flags ******* PIVL PYR
   # - # ATMP SNOW IWAT SLD IWG IQAL *******
 END PRINT-INFO
   <PLS > IWATER variable monthly parameter value flags ***
   # - # CSNO RTOP VRS VNN RTLI ***
 END IWAT-PARM1
 IWAT-PARM2
   <PLS > IWATER input info: Part 2 ***
# - # *** LSUR SLSUR NSUR RETSC
 END IWAT-PARM2
 IWAT-PARM3
   <PLS > IWATER input info: Part 3
   # - # ***PETMAX PETMIN
 END IWAT-PARM3
   <PLS > *** Initial conditions at start of simulation
   # - # *** RETS SURS
```

END IWAT-STATE1

```
SCHEMATIC
                   <--Area--> <-Target-> MBLK ***
<-factor-> <Name> # Tbl# ***
<-Source->
Pre-Developed Basin***
                        3.08 COPY 501 12
3.08 COPY 501 13
PERLND 12
PERLND 12
*****Routing****
END SCHEMATIC
NETWORK
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
END NETWORK
RCHRES
 GEN-INFO
  RCHRES Name Nexits Unit Systems Printer
  # - #<----> User T-series Engl Metr LKFG
                                                       * * *
                                                       * * *
                              in out
 END GEN-INFO
 *** Section RCHRES***
 ACTIVITY
  # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG ***
 END ACTIVITY
 PRINT-INFO
  <PLS > ******** Print-flags ******** PIVL PYR
  # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR ********
 END PRINT-INFO
 HYDR-PARM1
  RCHRES Flags for each HYDR Section
  # - # VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each FG FG FG possible exit *** possible exit possible exit ***
 END HYDR-PARM1
 HYDR-PARM2
 # - # FTABNO LEN DELTH STCOR
                                        KS
                                              DB50
 <----><----><---->
                                                       * * *
 END HYDR-PARM2
  RCHRES Initial conditions for each HYDR section
  <---->
                <---><---><---><--->
 END HYDR-INIT
END RCHRES
SPEC-ACTIONS
END SPEC-ACTIONS
FTABLES
END FTABLES
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<Name> # # ***
```

| WDM<br>WDM                 | _            | EVAP<br>EVAP   | ENGL<br>ENGL       | 0.76<br>0.76                          | PERLND<br>IMPLND  | 1 99<br>1 99 |       | PETINP<br>PETINP                                 |
|----------------------------|--------------|----------------|--------------------|---------------------------------------|-------------------|--------------|-------|--------------------------------------------------|
| END EXT                    | SOUI         | RCES           |                    |                                       |                   |              |       |                                                  |
| <name></name>              | -> +<br>01 ( | OUTPUT         | <name> #</name>    | #<-factor->strg                       | <name></name>     |              | ame>  | sys Tgap Amd ***<br>tem strg strg***<br>NGL REPL |
| <name><br/>MASS-L</name>   | INK          | -              | <name> # 12</name> | > <mult><br/>#&lt;-factor-&gt;</mult> | <target></target> |              | -     | <-Member->*** <name> # #***</name>               |
| PERLND<br>END MA           |              | PWATER<br>LINK | SURO<br>12         | 0.083333                              | COPY              |              | INPUT | MEAN                                             |
| MASS-L<br>PERLND<br>END MA |              | PWATER         | 13<br>IFWO<br>13   | 0.083333                              | СОРУ              |              | INPUT | MEAN                                             |

END MASS-LINK

END RUN

#### Mitigated UCI File

RUN

```
GLOBAL
 WWHM4 model simulation
                      END 3 0
 START 1948 10 01
                               2009 09 30
 RUN INTERP OUTPUT LEVEL
 RESUME 0 RUN 1
                                     UNIT SYSTEM 1
END GLOBAL
FILES
             <---->***
<File> <Un#>
<-ID->
WDM
         26
             2025-11-11 - Wetland Hyd Analysis.wdm
MESSU
         25
             Mit2025-11-11 - Wetland Hyd Analysis.MES
             Mit2025-11-11 - Wetland Hyd Analysis.L61
         27
             Mit2025-11-11 - Wetland Hyd Analysis.L62
         28
             POC2025-11-11 - Wetland Hyd Analysis1.dat
         30
END FILES
OPN SEQUENCE
   INGRP
             12
                   INDELT 00:15
    PERLND
              501
    COPY
    DISPLY
   END INGRP
END OPN SEQUENCE
DISPLY
 DISPLY-INFO1
   # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
   Developed Basin
                                                      1 2 30
 END DISPLY-INFO1
END DISPLY
COPY
 TIMESERIES
  # - # NPT NMN ***
   1 1
)1 1
              1
 501
               1
 END TIMESERIES
END COPY
GENER
 OPCODE
 # # OPCD ***
 END OPCODE
 PARM
            K ***
  #
 END PARM
END GENER
PERLND
 GEN-INFO
   <PLS ><----Name---->NBLKS Unit-systems Printer ***
                         User t-series Engl Metr ***
                                    in out
                             1
  12 C, Forest, Steep
 END GEN-INFO
 *** Section PWATER***
 ACTIVITY
  # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
12 0 0 1 0 0 0 0 0 0 0 0
 END ACTIVITY
 PRINT-INFO
   <PLS > ********* Print-flags *************** PIVL PYR
  # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC **********
12 0 0 4 0 0 0 0 0 0 0 0 0 1 9
 END PRINT-INFO
```

```
PWAT-PARM1
   <PLS > PWATER variable monthly parameter value flags ***
  # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***
12 0 0 0 0 0 0 0 0 0 0
 END PWAT-PARM1
 PWAT-PARM2
  - <del>п</del> - - - 0
 END PWAT-PARM2
 PWAT-PARM3
  PWAT-PARM3

<PLS > PWATER input info: Part 3 ***

# - # ***PETMAX PETMIN INFEXP INFILD DEEPFR
12 0 0 0 2 2 0
                                                           BASETP
                                                 0 0
 END PWAT-PARM3
 PWAT-PARM4
   <PLS > PWATER input info: Part 4
  # - # CEPSC UZSN NSUR INTFW IRC LZETP ***
12 0.2 0.3 0.35 6 0.3 0.7
 END PWAT-PARM4
 PWAT-STATE1
   <PLS > *** Initial conditions at start of simulation
    ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
       # *** CEPS SURS UZS IFWS LZS AGWS 0 0 0 0 2.5 1
                                                                     GWVS
  12
 END PWAT-STATE1
END PERLND
IMPLND
 GEN-INFO
   <PLS ><-----Name----> Unit-systems Printer ***
   # - #
                           User t-series Engl Metr ***
                                  in out
 END GEN-INFO
 *** Section IWATER***
 ACTIVITY
   <PLS > ******** Active Sections *********************
   # - # ATMP SNOW IWAT SLD IWG IQAL ***
 END ACTIVITY
 PRINT-INFO
   <ILS > ******* Print-flags ******* PIVL PYR
   # - # ATMP SNOW IWAT SLD IWG IQAL *******
 END PRINT-INFO
   <PLS > IWATER variable monthly parameter value flags ***
   # - # CSNO RTOP VRS VNN RTLI ***
 END IWAT-PARM1
 IWAT-PARM2
   <PLS > IWATER input info: Part 2 ***
# - # *** LSUR SLSUR NSUR RETSC
 END IWAT-PARM2
 IWAT-PARM3
   <PLS > IWATER input info: Part 3
   # - # ***PETMAX PETMIN
 END IWAT-PARM3
   <PLS > *** Initial conditions at start of simulation
   # - # *** RETS SURS
```

END IWAT-STATE1

```
SCHEMATIC
                  <--Area--> <-Target-> MBLK ***
<-factor-> <Name> # Tbl# ***
<-Source->
<Name> #
Developed Basin***
                       3.037 COPY 501 12
3.037 COPY 501 13
PERLND 12
PERLND 12
******Routing*****
END SCHEMATIC
NETWORK
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
END NETWORK
RCHRES
 GEN-INFO
  RCHRES Name Nexits Unit Systems Printer
  # - #<----> User T-series Engl Metr LKFG
                                                       * * *
                                                       * * *
                               in out
 END GEN-INFO
 *** Section RCHRES***
 ACTIVITY
  # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG ***
 END ACTIVITY
 PRINT-INFO
  <PLS > ******** Print-flags ******** PIVL PYR
  # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR ********
 END PRINT-INFO
 HYDR-PARM1
  RCHRES Flags for each HYDR Section
  # - # VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each FG FG FG possible exit *** possible exit possible exit ***
 END HYDR-PARM1
 HYDR-PARM2
 # - # FTABNO LEN DELTH STCOR
                                        KS
                                              DB50
 <----><----><---->
                                                       * * *
 END HYDR-PARM2
  RCHRES Initial conditions for each HYDR section
  <---->
                <---><---><---><--->
 END HYDR-INIT
END RCHRES
SPEC-ACTIONS
END SPEC-ACTIONS
FTABLES
END FTABLES
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<Name> # # ***
```

|                                                                    | EVAP<br>EVAP         | ENGL<br>ENGL               | 0.76<br>0.76                                                        |                                 | L 999<br>L 999 | EXTNL<br>EXTNL | PETINP<br>PETINP                   |  |
|--------------------------------------------------------------------|----------------------|----------------------------|---------------------------------------------------------------------|---------------------------------|----------------|----------------|------------------------------------|--|
| END EXT SO                                                         | URCES                |                            |                                                                     |                                 |                |                |                                    |  |
| <name> ‡ COPY 1</name>                                             | <-Grp> OUTPUT OUTPUT | <name> # : MEAN 1 :</name> | > <mult>Tran<br/>#&lt;-factor-&gt;strg<br/>1 48.4<br/>1 48.4</mult> | <name> = 701</name>             |                | ne><br>√ E     | sys Tgap<br>tem strg<br>NGL<br>NGL |  |
| MASS-LINK <volume> <name> MASS-LIN PERLND END MASS</name></volume> | IK<br>PWATER         | <name> # : 12</name>       | > <mult><br/>#&lt;-factor-&gt;<br/>0.083333</mult>                  | <target> <name></name></target> |                | <-Grp>         | <-Member<br><name> ‡</name>        |  |
| MASS-LIN<br>PERLND<br>END MASS                                     | PWATER               | 13<br>IFWO<br>13           | 0.083333                                                            | COPY                            |                | INPUT          | MEAN                               |  |

END MASS-LINK

END RUN

# Predeveloped HSPF Message File

# Mitigated HSPF Message File

## Disclaimer

#### Legal Notice

This program and accompanying documentation is provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by the user. Clear Creek Solutions, Inc. disclaims all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions, Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions, Inc. has been advised of the possibility of such damages.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com